Tìm x biết :
\(\frac{x-1}{7}=\frac{9}{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{9}+\frac{x+2}{8}+\frac{x+3}{7}+...+\frac{x+9}{1}=-9\)
\(\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+1\right)+\left(\frac{x+3}{7}+1\right)+...+\left(\frac{x+9}{1}+1\right)=0\)
\(\frac{x+10}{9}+\frac{x+10}{8}+\frac{x+10}{7}+...+\frac{x+10}{1}=0\)
\(\left(x+10\right).\left(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+...+1\right)=0\)
vì \(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+...+1\ne0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
\(\frac{x-1}{5}+\frac{x-1}{7}+...+\frac{x-1}{37}=0=>\left(x-1\right).\left(\frac{1}{5}+\frac{1}{7}+...+\frac{1}{37}\right)=0\)
mà \(\frac{1}{5}+\frac{1}{7}+...+\frac{1}{37}>0\)
=> x-1 = 0
=> x = 1
Vậy x=1
đúng nha
Lời giải:
$x-\frac{1}{3}+x-\frac{1}{5}+x-\frac{1}{7}+x-\frac{1}{9}=0$
$(x+x+x+x)-(\frac{1}{3}+\\frac{1}{5}+\frac{1}{7}+\frac{1}{9})=0$
$4\times x-\frac{248}{315}=0$
$4x=\frac{248}{315}$
$x=\frac{248}{315}:4=\frac{62}{315}$
Câu 2 đây:
\(|x^2+|x-1||=x^2+2\)
\(\Rightarrow\orbr{\begin{cases}x^2+\left|x-1\right|=x^2+2\\x^2+\left|x-1\right|=-x^2-2\left(l\right)\end{cases}}\)
\(\Rightarrow\left|x-1\right|=2\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
a) \(M=\left(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+0,5}{1\frac{1}{6}-0,875+0,7}\right):\frac{2012}{2013}\)
\(=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{2}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\right):\frac{2012}{2013}\)
\(=\left(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{2\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}{7\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}\right):\frac{2012}{2013}\)
\(=\left(\frac{2}{7}-\frac{2}{7}\right):\frac{2012}{2013}\)
\(=0\)
a)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+2\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+2\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+2}=\frac{2}{9}:2\)
\(\frac{1}{x+2}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+2}=\frac{1}{18}\)
=>x+2=18
=>x=16
b tương tự nhân nó với 1/2
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
\(\frac{x-1}{7}=\frac{9}{x+1}\)
\(\Leftrightarrow\left(x-1\right).\left(x+1\right)=9.7\)
Tới đây VT ta áp dụng hằng đẳng thức số 3 .
\(x^2-1^2=63\)
\(x^2=63+1\)
\(x^2=64\)
\(\Rightarrow x=\pm\sqrt{63}\)
\(\frac{x-1}{7}=\frac{9}{x+1}\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)=9.7\)
\(\Rightarrow x-1=7;x+1=9\Rightarrow x=8\)