tam giác ABC có góc A = 90 độ, góc B = 30 độ , đường cao AH và trung tuyến AM. Gọi BE đường cao tam giác ABM . Chứng minh BE = EH = AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và DMC có góc AMB= gCMD,AM=MD,BM=MC=> Tg AMB=TgDMC(cgc)
b) Tam giác ABE có BH là đường cao ( BHvg với AE) và là đường trung tuyến( EH=HA)=> ABE là tg cân taij B
1: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
2: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
\(\widehat{DCA}\) chung
Do đó: ΔCDA\(\sim\)ΔCEB
Suy ra: CD/CE=CA/CB
hay \(CD\cdot CB=CA\cdot CE\)
a.) xét tam giác ehc:
o và i là trung điểm của he và ec => oi là trung bình cua tam giác ehc
suy ra oi//hc mà hc vuong góc với ah
suy ra oi vuông góc với ah(điều phải chứng minh)
b.) xét tam giác ABC:
AH là đường cao và là đường trung tuyến ứng với cạnh đáy BC nên H là trung điểm của BC
xét tam giác BEC:
H và I là trung điểm của BC và CE suy ra HI là chung bình của tam giác BEC
suy ra HI//BE (1)
tam giác AHI có: OI vuông AH;HE vuông AI mà HI và OI cắ tại O nên O là trức tâm của tam giác AHI suy ra HI vuông AI (2)
từ 1 và 2 ta suy ra AO vuông BE
k cho mk nhé