Chứng minh rằng nếu 1 đường thẳng cắt 2 đường thẳng song song thì:
Các tia phân giác của 2 góc đồng vị song song với nhau .Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk vẽ hơi xấu nha:
Ta có: góc A = góc B (vì 2 góc này ở vị trí đồng vị của y//x).
Vì Az là p/g của góc A nên góc A\(_1\) = góc A\(_2\).
Vì Bt là p/g của góc B nên góc B\(_1\) = góc B\(_2\).
\(\Rightarrow\) góc A\(_2\) = góc B\(_2\) ( hoặc góc A\(_1\) = góc B\(_1\)). Mà 2 góc này ở vị trí đồng vị nên Az//Bt.
Vậy ta có thể KL: nếu 1 đường thẳng cắt 2 đường thẳng song song thì các tia phân giác của 2 góc đồng vị song song với nhau. (đpcm).
tick nha!
Ta có: góc A = góc B (vì 2 góc này ở vị trí đồng vị của y//x).
Vì Az là p/g của góc A nên góc A11 = góc A22.
Vì Bt là p/g của góc B nên góc B11 = góc B22.
⇒⇒ góc A22 = góc B22 ( hoặc góc A11 = góc B11). Mà 2 góc này ở vị trí đồng vị nên Az//Bt.
Vậy ta có thể KL: nếu 1 đường thẳng cắt 2 đường thẳng song song thì các tia phân giác của 2 góc đồng vị song song với nhau. (đpcm).
Vì a//b
=>2gocs có chứa tia phân giác bằng nhau ( 2 góc so le trong ) (1)
Vì tia này phân giác góc này
=>goc nhỏ này = góc nhỏ kia = 1 nửa góc to (2)
Tia phân giác kia chứng minh tương tự (3)
Từ (1), (2) và (3) => hai góc nhỏ bằng nhau (VD : O^1 = B^1 )
Mà 2 góc này ở vị trí so le trong
=> hai tia phân giác ấy song song với nhau
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
- Gỉa sử 2 góc đồng vị đó là a và b có tia phân giác cắt tạo thành các góc a1, a2, b1, b2
Thấy : \(\widehat{a}=\widehat{b}\)
Mà \(\left\{{}\begin{matrix}\widehat{a1}=\widehat{a2}\\\widehat{b1}=\widehat{b2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{a1}=\widehat{b1}\\\widehat{a2}=\widehat{b2}\end{matrix}\right.\)
- Xét 2 đường phân giác có 2 góc a1, b1 hoặc a2, b2 là 2 góc ở vị trí đồng vị và bằng nhau .
=> Hai đường phân giác đó song song với nhau .
Gọi AB và CD là 2 đường thẳng song song,
Đường thẳng EF cắt AB tại M , cắt CD tại N. Xét 2 góc đồng vị EMB và MND với 2 tia phân giác MN và NQ . ta có ; \(\widehat{EMP}=\widehat{\dfrac{EMB}{2};MNQ=\widehat{\dfrac{MND}{2}}}\). Do AB || CD nên EMP=MND (2 góc đồng vị ) ma \(\widehat{EMP}=\widehat{\dfrac{EMB}{2};MNQ=\widehat{\dfrac{MND}{2}}}\) \(\Rightarrow EMP=MNQ\) ( mả 2 góc nay o vi tri đồng vị ) \(\Rightarrow MP\) // NQ \(\Rightarrow\) Các tia phân giác của 2 góc đồng vị song song với nhau .Giả sử đường thẳng d căt 2 đường thẳng song song tại A, B, đường phân giác góc A và B cắt nhau tại M
2 góc trong cùng phía có tổng = 180 độ
=> (MBA + MAB) = 180/2 = 90 độ
=> BMA = 180 - MAB - MBA = 180 - 90 = 90 độ
hay AM vuông góc với BM