Tính nhanh
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{2}{1.3}-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-\frac{2}{9.11}-\frac{2}{11.13}-\frac{2}{13.15}\)
\(=\left(-\frac{2}{1.3}\right)+\left(-\frac{2}{3.5}\right)+\left(-\frac{2}{5.7}\right)+\left(-\frac{2}{7.9}\right)+\left(-\frac{2}{9.11}\right)+\left(-\frac{2}{11.13}\right)+\left(-\frac{2}{13.15}\right)\)
\(=\left(-2\right).\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\right)\)
\(=\left(-2\right).\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\left(-2\right).\left(1-\frac{1}{15}\right)=\left(-2\right).\frac{14}{15}\)
\(=-\frac{28}{15}\)
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
\(\frac{1}{2}-\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-\frac{1}{7.9}-\frac{1}{9.11}=\frac{4}{5}-x\)
<=> \(2.\frac{1}{2}-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=\frac{8}{5}-2x\)
<=> \(1-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)=\frac{8}{5}-2x\)
<=> \(1-\left(1-\frac{1}{11}\right)-\frac{8}{5}=-2x\)
<=> \(-\frac{83}{55}=-2x\)
<=> \(x=\frac{83}{110}\)
\(Q=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\)\(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)
\(Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(Q=\frac{1}{3}+0+0+0-\frac{1}{11}\)
\(Q=\frac{11}{33}-\frac{3}{33}=\frac{8}{33}\)
Ta có:
A = \(\frac{2}{1.3}\)+ \(\frac{2}{3.5}\)+ \(\frac{2}{5.7}\)+ \(\frac{2}{7.9}\) + ... + \(\frac{2}{2001.2003}\) + \(\frac{2}{2003.2005}\)
= \(\frac{1}{1}\) - \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{9}\) + ... + \(\frac{1}{2001}\)- \(\frac{1}{2003}\)+ \(\frac{1}{2003}\)- \(\frac{1}{2005}\)
= 1 - \(\frac{1}{2005}\)
= \(\frac{2004}{2005}\)
Chúc bạn học tốt nha ^^!!
2\3x-780\11:[13\2.(1\3.5+1\5.7+1\7.9+1\9.11]=-5
2\3x-780\11:[13\2.(1\3-1\5+1\5-1\7+....+1\9-1\11)]=-5
2\3x-780\11:[13\2.(1\3-1\11)]=-5
2\3x-780\11:[13\2.8\33]=-5
2\3x-780\11:52\33=-5
2\3x-525\13=-5
2\3x=-5+525\13
2\3x=460\13
x=460\13:2\3
x=690\13
\(\frac{-2}{1.3}-\frac{2}{3.5}-...-\frac{2}{13.15}\)
\(=-\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{13.15}\right)\)
\(=-\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=-\left(1-\frac{1}{15}\right)\)
\(=\frac{-14}{15}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\)
\(=1-\left(\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+\frac{1}{9}\right)\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)