K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

Ta có : ax = by \(\Rightarrow\frac{x}{b}=\frac{y}{a}=\frac{x-y}{b-a}=1\left(\text{vì }x-y=b-a\right)\)

\(\Rightarrow x=b;y=a\)

Vậy x = b ; y = a

27 tháng 9 2020

a, \(|x-1|+|2x-y+3|=0\)

Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)

b, \(|x-y|+|x+y-2|=0\)

Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)

c, \(|x+y-1|+|2x-3y|=0\)

Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)

Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)

\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)

27 tháng 9 2020

a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)

b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)

17 tháng 10 2021

\(\left(2x+x^2\right)\left(x^2-3x+2\right)=0\Leftrightarrow x\left(x+2\right)\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\\x=2\end{matrix}\right.\\ A=\left\{-2;0;1;2\right\}\)

\(3\le x^3\le27\Leftrightarrow x\in\left\{2;3\right\}\\ B=\left\{2;3\right\}\)

\(\Leftrightarrow A\cup B=\left\{-2;0;1;2;3\right\}\)

31 tháng 1 2018

a.x + a.y + b.x + b.y

= a. (x + y ) + b . (x + y)

= (x + y ) . ( a + b )

thay x + y = 17 ; a + b = -2 Ta có

a.x + a.y + b.x + b.y

= 17 + (-2)

= 15

CHUC BN HỌC TỐT Chương II : Số nguyên

31 tháng 1 2018

sai 100‰ luon !!!

`# \text {Kaizu DN}`

`a)`

`(3x + 6) + (7x - 14) = 0?`

\(\Rightarrow3x+6+7x-14=0\\ \Rightarrow\left(3x+7x\right)+\left(6-14\right)=0\\ \Rightarrow10x-8=0\\ \Rightarrow10x=8\Rightarrow x=\dfrac{8}{10}\\ \Rightarrow x=\dfrac{4}{5}\)

Vậy, \(x=\dfrac{4}{5}\) 

`b)`

`17y + 35 + 4x + 17 = 42`

\(\Rightarrow\left(17y+17\right)+\left(35+4x\right)=42\\ \Rightarrow17\left(y+1\right)+\left(35+4x\right)=42\)

Bạn xem lại đề ;-;.

25 tháng 12 2022

a) 3x-5 ⋮ x+2

+ (x+2) ⋮ (x+2)

⇒ 3(x+2) ⋮ (x+2)

⇒3x+6   ⋮ x+2

mà 3x-5 ⋮ x+2

⇒ 3x-5-(3x+6) ⋮ x+2

⇒ 3x-5-3x-6    ⋮ x+2

⇒ 3x-3x-5-6    ⋮ x+2

⇒-1    ⋮ x+2

⇒ x+2=-1

     x    =-1+2

      x    =1

 vậy x=1

*câu b bnj cho đề bài rõ ràng hơn nhé

nếu đúng thì tích đúng cho mình nha

25 tháng 12 2022

a) 3x-5 ⋮ x+2

+ (x+2) ⋮ (x+2)

⇒ 3(x+2) ⋮ (x+2)

⇒3x+6   ⋮ x+2

mà 3x-5 ⋮ x+2

⇒ 3x-5-(3x+6) ⋮ x+2

⇒ 3x-5-3x-6    ⋮ x+2

⇒ 3x-3x-5-6    ⋮ x+2

⇒-1    ⋮ x+2

⇒ x+2=-1

     x    =-1+2

      x    =1

 vậy x=1

20 tháng 7 2023

a.x - a.y + b.x - b.y =(a.x - a.y) + (b.x-b.y)

                               = a(x - y) + b(x - y)

                               =(a+b)(x-y)

Giá trị của biểu thức tại a+b= -7 và x-y= -1 là

               -7.(-1)=7

20 tháng 7 2023

Để giải biểu thức x - y + b.x - b.y, ta sử dụng thông tin a + b = -7 và x - y = -1.

Thay thế a + b = -7 vào biểu thức ban đầu, ta có:
x - y + b.x - b.y = (x + b.x) + (-y - b.y) = (1 + b)x + (-1 - b)y

Thay thế x - y = -1 vào biểu thức trên, ta có:
(1 + b)x + (-1 - b)y = (1 + b)x + (-1 - b)(x - 1) = (1 + b)x + (-1 - b)x + (1 + b) = (2b)x + (2 - b)

Vậy, biểu thức đã cho được đơn giản thành (2b)x + (2 - b).