K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Theo lời của bạn Dung, Ngọc bổ sung cho Vũ thêm cách nữa nhé :

Nếu đề tương tự như cách 1 mình làm thì ta có : 

\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow\left(a^2x^2+b^2y^2+c^2z^2\right)+a^2y^2+a^2z^2+b^2x^2+c^2x^2+b^2z^2+c^2y^2=\left(a^2x^2+b^2y^2+c^2z^2\right)+2\left(axby+bycz+czax\right)\)

\(\Leftrightarrow\left(a^2y^2-2aybx+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)

Mà mỗi hạng tử ở vế phải luôn không âm, do vậy :

\(\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\) \(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

9 tháng 12 2016

khó quá trời đất ơi!

21 tháng 9 2018

giúp mình nhé các bạn

15 tháng 11 2019

Đề bài có vấn đề bạn nhé !

Đẳng thức <=>1/x+1/y+1/z=1/x-1/y-1/z

<=>2(1/y+1/z)=0

<=> (y+z)/yz=0

<=> y+z=0 do yz khác 0 (đk)

<=> x=0 do x=y+z

đến đây thì vô lí nhé do x khác 0 (đk)