tìm x,y,z biết x/2=y/3=z/3 và x+2y-3z= -20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=>\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(x=2.5=10,2y=6.5=30,3z=12.5=60\)
=>\(x=10,y=15,z=20\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[\left(-3,2\right)+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[-\frac{3}{2}+\frac{2}{5}\right]\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=-\frac{11}{10}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{11}{10}-\frac{4}{5}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{19}{10}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{19}{10}\\x-\frac{1}{3}=-\frac{19}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{67}{30}\\x=-\frac{47}{30}\end{cases}}\)
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=\frac{-20}{-4}=5\)
\(\Rightarrow x=2.5=10\)
\(\Rightarrow y=3.5=15\)
\(\Rightarrow z=4.5=20\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}\)= 5
=> x = 5.2 = 10 ; y = 5.3 = 15 ; z = 5.4 = 20
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=-\frac{20}{-4}=5\)
x=10
y=15
z=20
Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
áp đụng t/c dãy tỉ số = nhau ta dc :
\(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{15}=\frac{x+2y-3z}{3+8-15}=\frac{20}{-4}=-5\)
\(=>x=-5.3=-15\)
\(=>y=-5.-4=20\)
\(=>z=-5.5=-25\)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{15}=\frac{x+2y-3z}{3+8-15}=\frac{20}{-4}=-5\)
=> x = -5 . 3 = -15
y = -5 . 4 = -20
z = -5 . 5 = -25
Theo bài toán :
\(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{\frac{z}{2}}{10}=\frac{z}{20}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{x+2y-3z}{10+30-60}=\frac{20}{-20}=-1\)
\(\Rightarrow x=10.-1=-10\)
\(y=15.-1=15\)
\(z=20-1=-20\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=-\frac{20}{-4}=5\)
Nên : \(\frac{x}{2}=5\Rightarrow x=10\)
\(\frac{y}{3}=5\Rightarrow y=15\)
\(\frac{z}{4}=5\Rightarrow z=20\)
Vậy ............................
ta có : x/2 = y/3 = z/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2= y/3 = z/4 = x+2y-3z/ 2+2.3-3.4 =-20/-4 =5
Từ x/2 = 5 => x = 2.5 = 10
y/3 = 5 => y=3 .5 = 15
z/4 = 5 => z= 5.4 = 20
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{3}=\frac{2y}{6}=\frac{2z}{9}\)
Áp ụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x}{3}=\frac{2y}{6}=\frac{3z}{9}=\frac{x+2y-3z}{3+6-9}=-\frac{20}{0}\)
Vô nghĩa
=> Đề sai
bn ơi,đề đúng đấy ạ,tớ cx làm đc r nha