Tính nhanh nha
1+2+3+4+..................+2015+2016
Viết cả ra giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1}{2016}\)
=> x + 1 = 2016 . 2
=> x + 1 = 4032
=> x = 4031
Vậy x = 4031
\(M=\dfrac{3}{1\times2}+\dfrac{3}{2\times3}+\dfrac{3}{3\times4}+...+\dfrac{3}{2015\times2016}+\dfrac{3}{2016\times2017}\)
\(=3\times\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2015\times2016}+\dfrac{1}{2016\times2017}\right)\)
\(=3\times\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=3\times\left(1-\dfrac{1}{2017}\right)\)
\(=3\times\dfrac{2016}{2017}\)
\(=\dfrac{6048}{2017}\)
#DatNe
a/ -1-2-3-...-2011-2017
= - (1+2+3+...+2017)
\(=-\frac{2017.2018}{2}=-2035153\)
b/ 1+(-2)+3+(-4)+...+2015+(-2016)
= (1-2)+(3-4)+...+(2015-2016)
= -1-1-...-1=-1008
c/ 2-4-6+8+10-12-14+16+...+1994-1996-1998+2000
= (2-4-6+8)+(10-12-14+16)+...+(1994-1996-1998+2000)
= 0+0+...+0 = 0
Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)
Biến đổi mẫu
\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)
\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)
\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)
\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)
\(\frac{2015+2014\cdot2016}{2015\cdot2016-1}\)
\(=\frac{2015+\left(2015-1\right)2016}{2015\cdot2016-1}\)
\(=\frac{2015-2016+2015\cdot2016}{2015\cdot2016-1}\)
\(=\frac{2015\cdot2016-1}{2015\cdot2016-1}\)
\(=1\)
\(E=1-2+3-4+5-6+...2015-2016-2017\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...\left(2015-2016\right)-2017\)
Mỗi nhóm có kết quả = -1.
\(=>\left[\left(2016-1\right)+1\right]:2=1008\)
\(=-1.1008+2017=-1008+2017=1009\)
Tổng trên có :
( 2016 - 1 ) : 1 + 1 = 2016 ( số hạng )
Tổnh của dãy số trên là :
\(\frac{\left(2016+1\right).2016}{2}\) = 2033136
ta có công thức 1+2+3+...+n= \(\frac{n\left(n+1\right)}{2}\)
=> thay n=2016
ta được : 1+2+3+...+2016=\(\frac{2016.2017}{2}=2033136\)