(x-3)nhan(x+1)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a-b+c-d)-9a+b+c+d)=a-b+c-d-a-b-c-d
=(a-a)-(b+b)+(c-c)-(d-d)
=0-2b+0-2d
=-2b-2d
(-a+b-c)+(a-b)-(a-b+c)
=-a+b-c+a-b-a+b-c
=(-a+a-a)+(b-b+b)-(c+c)
=-a+b-2c
-(a-b-c)+(b-c+d)-(a+b+d)
=-a+b+c+c-c+d-a-b-d
=(-a-a)+(b-b)+(c+c-c)+(d-d)
=-2a+0+c+0
=-2a+c
x+x+x+82=-2-x
3x+82=-2-x
3x+x=-2-82
4x=-84
x=-84:4=-21
5.(-40).x=-100
-200.x=-100
x=-100:(-200)
x=0,5
-1.(-3).(-6).x=36
-18.x=36
x=36:(-18)
x=-2
|1-4x|=7
Xảy ra hai trường hợp:1-4x=7=>4x=1-7=-6=>x=-6:4=-1,5
1-4x=-7=>4x=1+7=8=>x=8:4=2
Vì x là số nguyên nên ta chỉ có một đáp án đó là:2
x.(x-2)=0+> x=0 hoặc x=2
x.(x-2)>0=>x=-1;-2;-3;-4;...
(1-x)(x^2+1)=0 chắc chắn sẽ không nhận x=-1 hoặc x=5 làm nghiệm rồi
(2x^2+7)(8-mx)=0
=>8-mx=0
Nếu 8-mx=0 nhận x=-1 làm nghiệm thì m+8=0
=>m=-8
Nếu 8-mx=0 nhận x=5 làm nghiệm thì 8-5m=0
=>m=8/5
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{\left(x+2\right)-x}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(1-\frac{1}{x+2}=\frac{40}{41}\)
\(\frac{1}{x+2}=1-\frac{40}{41}\)
\(\frac{1}{x+2}=\frac{1}{41}\)
\(x+2=41\)
\(x=41-2\)
\(x=39\)
Tìm x
a) \(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{x\times\left(x+2\right)}=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{x\times\left(x+1\right)}\right)=\frac{20}{41}\)
\(\Rightarrow\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{x\times\left(x+2\right)}=\frac{20}{41}:\frac{1}{2}\)
\(\Rightarrow\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{x\times\left(x+2\right)}=\frac{40}{41}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{\left(x+2\right)}=\frac{40}{41}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Rightarrow x+2=41\)
\(\Rightarrow x=41-2\)
\(\Rightarrow x=39\)
Vậy x = 39
a) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=2\)
Vậy x=2
b) \(x+4=2^0+1^{2019}\)
\(\Leftrightarrow x+4=1+1\)
\(\Leftrightarrow x+4=2\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
\(\left[12\cdot15-x\right]\cdot\frac{1}{4}=120\cdot\frac{1}{4}\)
\(\Leftrightarrow\left[180-x\right]\cdot\frac{1}{4}=30\)
\(\Leftrightarrow180-x=30:\frac{1}{4}\)
\(\Leftrightarrow180-x=120\)
\(\Leftrightarrow x=60\)
\(x^3-3x^2+3x-1\) =0
=>\(\left(x-1\right)^3\)=0
=>x-1=0
=>x=1
vậy x =1
\(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
\(\left(x-3\right)\left(x+1\right)>0\)
\(\Leftrightarrow\begin{cases}x-3>0\\x+1>0\end{cases}\) hoặc \(\begin{cases}x-3< 0\\x+1< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>3\\x>-1\end{cases}\) hoặc \(\begin{cases}x< 3\\x< -1\end{cases}\)
\(\Leftrightarrow x>3\) hoặc \(x< -1\)