chung minh rang goc tao boi 2 tia phan giac cua 2 goc ke bu la 1 goc vuong
nhanh mk can gap trong toi nay nhanh len mk tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gõ tạo bởi 2 tia phân giác của 2 góc kề bù=90 độ. Vì sao thì mk ko biết
Bài 1: * Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
\(25\%x+x=-1,25\)
\(x\left(25\%+1\right)=-1,25\)
\(x(\frac{1}{4}+\frac{4}{4})=-1,25\)
\(x\frac{5}{4}=-1,25\)
\(x=-1,25\div\frac{5}{4}\)
* Tự làm *
#Louis
Bài 2 :
Hình : tự vẽ
a) Có : \(\widehat{xOy}+\widehat{yOz}=180^o\)( tổng hai góc kề bù )
\(60^o+\widehat{yOz}=180^o\)
=> \(\widehat{yOz}=180^{o^{ }}-60^o=120^o\)
b) Do Om là tia p/g của \(\widehat{yOz}=>\widehat{yOm}=\widehat{zOm}\)
=> \(\widehat{yOm}+\widehat{zOm}=120^o\)
\(\widehat{yOm}+\widehat{yOm}=120^o\)
\(\widehat{yOm}.2=120^o\)
\(\widehat{yOm}=\frac{120^o}{2}\) \(=60^o\)
Có \(\widehat{yOm}=\widehat{xOy}\left(=60^o\right)\)
mà hai góc này ở vị trí kề nhau
=> Oy là tia p/g của \(\widehat{xOm}\)
Vì Ot là tia phân giác của \(\widehat{xOy}\)
=> \(\widehat{xOt}=\widehat{tOy}=\frac{\widehat{xOy}}{2}\).
Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\) (vì 2 góc kề bù)
=> \(\frac{\widehat{xOy}}{2}+\frac{\widehat{yOz}}{2}=90^0\)
=> \(\widehat{tOy}+\frac{\widehat{yOz}}{2}=90^0\)
Lại có: \(\widehat{tOy}+\widehat{yOt'}=90^0.\)
=> \(\widehat{yOt'}=\frac{\widehat{yOz}}{2}\).
=> Ot' là tia phân giác của \(\widehat{yOz}.\)
=> \(\widehat{yOt'}=\widehat{zOt'}\left(đpcm\right).\)
Chúc bạn học tốt!
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
*Gọi góc x Oz ,góc zOy là 2 góc kề bù ;và tiaOu ,Ov lần lượt là tia phân giác của góc x Oz ,zOy .
*Để chứng minh 2 tia phân giác của 2 góc bề bù vuông góc với nhau ,ta sẽ chứng minhtia Ou vuông góc tia Ov
*Vì tia Ou ,Ov lần lượt là tia phân giác của góc xOz ,zOy nên :
(góc u =1/2 góc x xOz.
(góc zOv = 1/2 góc zOy.
Suy ra
(2 góc uOz = góc xOz
(2 góc zOv = góc zOy
Ta lại có :
góc xOz + góc zOy =180 độ (vì 2 góc xOz , góc zOy kề bù)
=> 2goc uOz + 2 góc zOv =180 độ
=>2 (góc uOz + góc xOv ) =180 độ
=>góc uOz + góc zOv = 90 độ
=>góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=>Tia Ou vuông góc tia Ov
Do đó ,2 tia phân giác của 2 góc bù thì vuông góc với nhau.
vì tổng 2 góc kề bù=180 độ
tia phân giác cắt góc kề bù thành 2 nửa bằng nhau nên ta có:
180:2=90 độ
vậy tia phân giác của 2 góc kề bù vuông góc với nhau
(học tốt em nhé!)
Gọi 2 góc kề bù lần lượt là A và B (cần có dấu mũ ở trên nhé)
Ta có: A + B = 180 (độ) <=> 1/2A + 1/2B = 1/2(A+B) = 90 (độ)
Có ^\(O_1\)+^\(O_2\)+^\(O_3\)+^\(O_4\)=180
hay 2^\(O_2\)+2^\(O_3\)=180 (vì \(O_1=O_2\) ;^\(O_3=O_4\))
=> 2\(\left(O_2+O_3\right)=108\)
=> \(O_2+O_3=90\)