Tìm các giá trị nguyên của n thỏa mãn để biểu thức \(A=\frac{3n+4}{n-1}\)có giá trị là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Chúc em học tốt^^
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
3n+4 chia hết cho n+1
3.(n+1) chai hết cho n+1
3n+3 chia hết cho n+1
3n+4-(3n+3) chia hết cho n+1
1 chia hết cho n+1
n+1 thuộc Ư(1)
n+1 thuộc (1;-1)
n thuộc ( 0;-2)
vậy n thuộc ( 0;-2)
Để A có giá trị nguyên thì:
3n+4 chia hết cho n-1.
\(3n+4=3n-3+7\)
\(=3.\left(n-1\right)+7\)
Suy ra 7 chia hết cho n-1.
Thay các trường hợp vào rồi tính ra.
3n+4/n-1 thuộc Z
3n-3+7/n-1 thuộc Z
3n-3/n-1 + 7/n-1 thuộc Z
3+7/n-1 thuộc Z
7/n-1 thuộc Z
n-1 thuộc ước của 7
n-1= -7;-1;1;7
n=-6;0;2;8
câu 1=4% nhớ tích nha còn câu 2;3 bạn trên làm đúng rồi
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Để \(A=\frac{3n+4}{n-1}\) đạt giá trị nguyên
<=> 3n + 4 \(⋮\) n - 1
=> ( 3n - 3 ) + 7 \(⋮\) n - 1
=> 3 . ( n - 1 ) + 7 \(⋮\) n - 1
\(\Rightarrow\begin{cases}3\left(n-1\right)⋮n-1\\7⋮n-1\end{cases}\)
=> n - 1 \(\in\) Ư(7) = { - 7 ; -1 ; 1 ; 7 }
Ta có bảng sau :
Vậy x \(\in\) { - 6 ; 0 ; 2 ; 8 }
\(A=\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=3+\frac{7}{n-1}\)
Để A có giá trị nguyên <=> n-1 là ước của 7
=> \(n-1\in\left\{1;7;-1;-7\right\}\)
=> \(n\in\left\{2;8;0;-6\right\}\)
Chúc bạn làm bài tốt