Cho các số thực dương thoả mãn a+b+c+\(\sqrt{abc}\)=4. Tính giá trị biểu thức A=\(\sqrt[]{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-b\right)\left(4-a\right)}-\sqrt{abc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\)\(\ge\)\(\sqrt{2^2+\left(a^2+b^2\right)^2}\)(1)
Ta lại có \(\frac{a^2+b^2}{2}\ge ab\)
\(\frac{a^2+1}{2}\ge a\)
\(\frac{b^2+1}{2}\ge b\)
Từ đó => a2 + b2 \(\ge\)a + b + ab - 1 = \(\frac{1}{4}\)
Thế vào 1 ta được P \(\ge\)\(\frac{\sqrt{65}}{4}\)
\(\frac{9}{4}=\left(a+1\right)\left(b+1\right)\le\frac{\left(a+1\right)^2+\left(b+1\right)^2}{2}=\frac{2\left(a^2+1\right)+2\left(b^2+1\right)}{2}=a^2+b^2+2.\)
\(\Rightarrow a^2+b^2\ge\frac{1}{4}\)
\(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\left(\frac{1}{4}\right)^2}=\frac{\sqrt{17}}{2}\)
Ta có: \(a+b+c+\sqrt{abc}=4\)
\(\Rightarrow4a+4b+4c+4\sqrt{abc}=16\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)
\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=\left|2a+\sqrt{abc}\right|=2a+\sqrt{abc}\)
Tương tự:
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{matrix}\right.\)
\(\Rightarrow A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
Ta có \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(a+c+\sqrt{abc}\right)\left(4-c\right)}\)
\(=\sqrt{\left(a^2+ac+a\sqrt{abc}\right)\left(4-c\right)}\\ =\sqrt{4a^2+ac\left(4-\sqrt{abc}-a-c\right)+4a\sqrt{abc}}\\ =\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}\\ =2a+\sqrt{abc}\left(a,b,c>0\right)\)
Cmtt \(\sqrt{b\left(4-c\right)\left(4-a\right)}=2b+\sqrt{abc};\sqrt{c\left(4-b\right)\left(4-a\right)}=2c+\sqrt{abc}\)
\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c\right)+2\sqrt{abc}\\ A=2\left(a+b+c+\sqrt{abc}\right)=2\cdot4=8\)
- \(A=\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}-1\right)^2}=\sqrt{10}-1\)
- \(B=\left(\sqrt{28}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}=\left(2\sqrt{7}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}\)
\(=\left(3\sqrt{7}-4\right).\sqrt{7}+7\sqrt{7}=3\sqrt{7}+3\sqrt{7}=6\sqrt{7}\)
- \(C=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\frac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
- \(D=0,2.\sqrt{10^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=2\sqrt{3}+2\left(\sqrt{3}-\sqrt{5}\right)=4\sqrt{3}-2\sqrt{5}\)
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}=16\Rightarrow16-4b-4c=4a+4\sqrt{abc}\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)
\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)
Tương tự : \(\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\); \(\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\)
\(\Rightarrow A=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
Nguyễn Bùi Đại Hiệp phục bạn này lần nào hỏi cũng chép sai đề.
\(a+b+c+\sqrt{abc}=4\)
\(\Leftrightarrow4\left(a+b+c\right)+4\sqrt{abc}=16\)(*)
\(A=\Sigma\left(\sqrt{a\left(4-b\right)\left(4-c\right)}\right)-\sqrt{abc}\)
\(A=\Sigma\left(\sqrt{a\left(16-4b-4c+bc\right)}\right)-\sqrt{abc}\)
Thay (*) vào A ta được :
\(A=\Sigma\left(\sqrt{a\left(4a+4b+4c+4\sqrt{abc}-4b-4c+bc\right)}\right)-\sqrt{abc}\)
\(A=\Sigma\left(\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\right)-\sqrt{abc}\)
\(A=\Sigma\sqrt{a\left(2\sqrt{a}+\sqrt{bc}\right)^2}-\sqrt{abc}\)
\(A=\Sigma\left[\sqrt{a}\cdot\left(2\sqrt{a}+\sqrt{bc}\right)\right]-\sqrt{abc}\)
\(A=\Sigma\left(2a+\sqrt{abc}\right)-\sqrt{abc}\)
\(A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}\)
\(A=2\left(a+b+c\right)+2\sqrt{abc}\)
\(A=2\left(a+b+c+\sqrt{abc}\right)\)
\(A=2\cdot4=8\)
Vậy....
ta có \(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4a+4\sqrt{abc}\)
=> \(4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
=> \(\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
=> \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
tương tự như thế thay vào , thì A=8
Ta có:
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
\(\Rightarrow\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
Tương tự như thế thay vào, thì A = 8