K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x-y+z}{4-6+15}=\frac{26}{13}=2\)
=> x = 4.2 = 8 
y = 6.2 = 12 
z = 15.2 = 30 

19 tháng 7 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x-y+z}{4-6+15}=\frac{26}{13}=2\)

\(\Rightarrow\begin{cases}\frac{x}{4}=2\\\frac{y}{6}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=2.4\\y=6.2\\z=2.15\end{cases}\)\(\Rightarrow\begin{cases}x=8\\y=12\\z=30\end{cases}\)

Vậy x=8;y=12;z=30

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Lời giải:
a.

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

\(\Rightarrow \left\{\begin{matrix} x=60\\ y=45\\ z=40\end{matrix}\right.\)

b)

Từ đkđb suy ra \(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)

\(\Rightarrow \left\{\begin{matrix} x=3\\ y=2\\ z=5\end{matrix}\right.\)

 

17 tháng 7 2016

Áp dụng t/c dãy tỉ số bằng nhau:

   \(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x-y+z}{4-6+15}=\frac{26}{13}=2\)

\(\Rightarrow\hept{\begin{cases}x=8\\y=12\\z=30\end{cases}}\)

17 tháng 7 2016

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x-y+z}{4-6+15}=\frac{26}{13}=2\)

\(\frac{x}{4}=2\Rightarrow x=8\)

\(\frac{y}{6}=2\Rightarrow y=12\)

\(\frac{z}{15}=2\Rightarrow z=30\)

12 tháng 10 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Do đó: x=-70; y=-135; z=-84

12 tháng 10 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x10=y15=z12=x−y+z10−15+12=−497=−7x10=y15=z12=x−y+z10−15+12=−497=−7

Do đó: x=-70; y=-135; z=-84

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225

a: \(\Leftrightarrow\dfrac{x}{-4}=\dfrac{21}{y}=\dfrac{z}{-80}=\dfrac{3}{4}\)

=>x=-3; y=28; z=-60

b: 5/12=x/-72

=>x=-72*5/12=-6*5=-30

c: =>x+3=-5

=>x=-8

23 tháng 7 2017

\(\frac{x}{4}=\frac{y}{6}\Leftrightarrow4y=6x\Rightarrow x=\frac{4y}{6}\)  (1)

\(\frac{y}{6}=\frac{z}{15}\Leftrightarrow6z=15y\Leftrightarrow z=\frac{15y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x-y+z=26\);ta được : \(\frac{4y}{6}-y+\frac{15y}{6}=26\)

\(\Leftrightarrow4y-6y+15y=26.6\)

\(\Leftrightarrow13y=156\Leftrightarrow y=12\)

Với \(y=12\Rightarrow x=\frac{4.12}{6}=8\)và \(z=\frac{15.12}{6}=30\)

Vậy ...

11 tháng 10 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)

Do đó: x=6; y=9; z=15

15 tháng 9 2021

\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)

\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)

⇒x=70;y=105;z=84

15 tháng 9 2021

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\)

⇒x=8;y=12;z=20