Tinh:
a/S=0.2+2.4+4.6+......+98.100
b/ A= 0.2+2.4+4.6+......+ 2n(2n+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=0.2+2.4+4.6+...+2n\left(2n+2\right)\)
\(6S=2.4.6+4.6.\left(8-2\right)+...+2n\left(2n+2\right)\left[\left(2n+4\right)-\left(2n-2\right)\right]\)
\(=2.4.6+4.6.8-2.4.6+...+2n\left(2n+2\right)\left(2n+4\right)-\left(2n-2\right).2n.\left(2n+2\right)\)
\(=2n\left(2n+2\right)\left(2n+4\right)\)
Suy ra \(S=\frac{2n\left(2n+2\right)\left(2n+4\right)}{6}\)
Gọi biểu thức trên là A ta có
2A=2/2.4+2/4.6+.....+2/2n(2n+2)
(=) 1/2 - 1/4 + 1/4 - 1/6 + ..... + 1/2n - 1/2n+2 = 1004/2009
(=) 1/2 - 1/2n+2 = 1004/2009
(=) 1/2n+2 = 1/2-1004/2009
(=) 1/2n+2 = 1/4018
=)) 2n+2 = 4018
=)) 2n = 4016
=)) n = 2008
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)
\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)
\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)