K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)

6 tháng 7 2016

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\times\left(3^2+1\right)-2^n\times\left(2^2+1\right)\)

\(=3^n\times10-2^n\times5\)

  • \(3^n\times10⋮10\)
  • \(2^n\times5⋮10\)

=> \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

15 tháng 1 2022

\(\sqrt{1+2+3+..+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)

\(=\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)

\(=\sqrt{2.\left(n+1\right).n:2-n}\)

\(=\sqrt{n\left(n+1\right)-n}\)

\(=\sqrt{n^2+n-n}\)

\(=\sqrt{n^2}\)

\(=n\)

31 tháng 8 2023

\(A=\sqrt[]{1+2+3+...+\left(n-1\right)+n+...+3+2+1}\)

Ta có :

\(1+2+3+...+\left(n-1\right)=\left(n-1\right)+...+3+2+1=\left[\left(n-1\right)-1\right]+1\left(n-1+1\right):2\)

\(=\dfrac{\left(n-1\right)n}{2}\)

\(\Rightarrow A=\sqrt[]{\dfrac{\left(n-1\right)n}{2}.2+n}\)

\(\Rightarrow A=\sqrt[]{\left(n-1\right)n+n}\)

\(\Rightarrow A=\sqrt[]{n^2-n+n}\)

\(\Rightarrow A=\sqrt[]{n^2}\)

\(\Rightarrow A=n\left(n>0\right)\)

\(\Rightarrow dpcm\)

31 tháng 8 2023

mơn trí

17 tháng 10 2018

Neu n la so chan thi n(n+3) chia het cho 2

Neu n la so le thi n+3 la so chan (vi le +le = chan)

                           => n(n+3) chia het cho 2

vay n(n+3) chia het cho 2 voi moi n la stn

Xét trường hợp n chẵn:

\(1^2+2^2+3^2+...+n^2=\left(1^2+3^2+5^2+...+\left(n-1\right)^2\right)+\left(2^2+4^2+6^2+...+n^2\right)\)

\(=\frac{\left(n-1\right).n.\left(n+1\right)+n\left(n+1\right).\left(n+2\right)}{6}\)

\(=\frac{n\left(n+1\right).\left(n-1+n+2\right)}{6}\)

\(=\frac{n\left(n+1\right).\left(2n+1\right)}{6}\)

Tương tự với trường hợp n lẻ . ta có \(\text{ĐPCM}\)

23 tháng 7 2017

\(A=1^2+2^2+3^2+....+n^2\)

\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+....+n\left[\left(n+1\right)-1\right]\)

\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)

\(=\left[1.2+2.3+3.4+....+n\left(n+1\right)\right]-\left(1+2+3+....+n\right)\)

Ta có :

\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(cái này tự CM nha)

\(1+2+3+....+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)(đpcm)

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

9 tháng 4 2022

Đặt \(n=4k+1\) thì \(P=\dfrac{\left(4k+1\right)\left(4k+2\right)\left(4k+4\right)\left(4k+6\right)}{2}=8\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.

Dẫn đến \(Q=\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.

Lại có \(\left(2k+1,4k+1\right)=1;\left(2k+1,k+1\right)=1;\left(2k+1,2k+3\right)=1\) nên \(\left(2k+1,\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\right)=1\).

Do đó để Q là số lập phương thì \(2k+1\) và \(R=\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.

Mặt khác, ta có \(R=8k^3+22k^2+17k+3\) 

\(\Rightarrow8k^3+12k^2+6k+1=\left(2k+1\right)^3< R< 8k^3+24k^2+24k+8=\left(2k+2\right)^3\) nên \(R\) không thể là số lập phương.

Vậy...

9 tháng 4 2022

 Em cám ơn thầy nhiều lắm ạ!

10 tháng 4 2022

lập phương hay chính phương thế bạn???

10 tháng 4 2022

nếu là chính phương thì ntn nha 

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

đặt \(t=n^2+3n\left(t\in Z^+\right)\)

phương trình thành:
\(t\left(t+2\right)=t^2+2t\)

vì \(t^2< t^2+2t< t^2+2t+1\)

hay \(t^2< t^2+2t< \left(t+1\right)^2\)

=> \(t^2+2t\) không thể là số chính phương

=>\(n\left(n+2\right)\left(n+2\right)\left(n+3\right)\) luôn luôn không thể là số chính phương

Ta có : \(n^3\left(n^2-7\right)^2-36n\)

\(=n[\left(n^3-7n\right)^2-36]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)

là tích của 7 số nguyên liên tiếp 

\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)

hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)