Tính: B= 1x2+2x3+3x4+...+2009x2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
=1+(\(\frac{-1}{2}\)+\(\frac{1}{2}\))+(\(\frac{-1}{3}\)+\(\frac{1}{3}\))+...+(\(\frac{-1}{2009}\)+\(\frac{1}{2009}\))-\(\frac{1}{2010}\)
=1+0+0+...+0-\(\frac{1}{2010}\)
=1-\(\frac{1}{2010}\)
=\(\frac{2010}{2010}\)-\(\frac{1}{2010}\)
=\(\frac{2009}{2010}\)
lớp 4 ghê nhỉ đã học bài này rùi tui lớp 6 mà mới học bài này
S=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
S=1-\(\frac{1}{2010}\)
S=\(\frac{2009}{2010}\)
k nha bn
\(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2008\times2009}+\frac{1}{2009\times2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
Vậy \(S=\frac{2009}{2010}\)
Học tốt #
B = \(\dfrac{2}{1\times2}\) + \(\dfrac{2}{2\times3}\)+ \(\dfrac{2}{3\times4}\)+...+ \(\dfrac{2}{99\times100}\)
B = 2 \(\times\) ( \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\)+ \(\dfrac{1}{3\times4}\)+....+ \(\dfrac{1}{99\times100}\))
B = 2 \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\))
B = 2 \(\times\) ( \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\))
B = 2 \(\times\) \(\dfrac{99}{100}\)
B = \(\dfrac{99}{50}\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}\)
\(=\frac{2010}{2011}\)
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2010-1/2011
= 1 - 1/2011
= 2010/ 2011
Đáp số: 2010/2011
Chúy ý công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
A= 1x2+2x3+3x4+...+98x99 A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97) = 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97) = 98x99x100
A= 1x2+2x3+3x4+...+98x99
A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97)
= 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97)
= 98x99x100.
B= 1.2+2.3+3.4+...+2009.2010
=>3B=1.2.3+2.3.3+3.4.3+...+2009.2010.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+2009.2010.(2011-2008)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+2009.2010.2011-2008.2009.2010
=2009.2010.2011
=>B=\(\frac{2009.2010.2011}{3}=2706866330\)
ta có: 1x2+2x3+3x4+....+n(n+1)
=1x(1+1)+2x(2+1)+3x(3+1)+....n(n+1)
=(1^2+2^2+3^2+¡+n^2)+(1+2+3+....+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=[n(n+1)[(2n+1)+3]/6
thay n=2009=> B=\(\frac{2009.\left(2009+1\right).\left(2009.2+1\right)+3}{6}\)=2704847286