K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

\(A=x-2\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)^2+\left(3y+1-\left(\sqrt{y}+1\right)^2\right)\)

 \(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{1}{2}\)

\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Amin= -1/2  khi  y=1/4; x=9/4

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

9 tháng 11 2018

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\ge\dfrac{4}{1^2}+\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}\ge4+2=6\)

Dấu "=" xảy ra <=> x = y = 0,5

12 tháng 6 2017

\(\Leftrightarrow\)2A\(=2X^2+2XY+2Y^2-6X+6Y\)

\(\Leftrightarrow\)\(2A\)\(=X^2+2XY+Y^2\)\(+X^2-6X+9+Y^2+6Y+9\)\(-18\)

\(\Leftrightarrow2A=\left(X+Y\right)^2+\left(X-3\right)^2+\left(Y+3\right)^2\)\(-18\)

\(\Rightarrow2A\ge-18\)

\(\Rightarrow A\ge-9\)

DẤU "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=3\\y=-3\end{cases}}\)

26 tháng 6 2017

Cảm ơn bạn nhiều

Bài 1:

a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)

Dấu '=' xảy ra khi x=-2

b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)

Dấu '=' xảy ra khi x=10

20 tháng 3 2017

Ta có: \(A=\left|x-2\right|+\left|x-10\right|=\left|x-2\right|+\left|10-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A\ge\left|x-2+10-x\right|=\left|-8\right|=8\)

Dấu " = " khi \(\left\{{}\begin{matrix}x-2\ge0\\10-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le10\end{matrix}\right.\Rightarrow2\le x\le10\)

Vậy \(MIN_A=8\) khi \(2\le x\le10\)

11 tháng 2 2019

Hỏi đáp Toán

bạn xài cái này gõ công thức ra đi

11 tháng 2 2019

giúp man luôn nè : \(A=\left[\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\right].\dfrac{x^2-1}{x^2+2}\)