Tìm m, n sao cho :
\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{5}{2.m}=\frac{1}{6}+\frac{n}{3}\) \(\left(m\ne0\right)\)
\(\frac{15}{6.m}=\frac{m}{6.m}+\frac{2.m.n}{6.m}\)
\(\frac{15}{6.m}=\frac{m+2mn}{6.m}\)
\(m+2mn=15\)
\(m\left(1+2n\right)=15\)
\(\Rightarrow m\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
Với m = 1, 1 + 2n = 15 hay n = 7.
Với m = 3, 1 + 2n = 5 hay n = 2
Với m = 5, 1 + 2n = 2 hay n = 1
Với m = 15, 1 + 2n = 1 hay n = 0.
Vậy ta tìm được 4 cặp (m;n) thỏa mãn là: (1;7) , (3;2) , (5;1) và (15;0)
Câu b, c hoàn toàn tương tự.
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Rightarrow\hept{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Câu còn lại làm nốt
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=3\\n=2\end{cases}}\)
\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{1}{m}-\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{2-m}{2m}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\6=2m\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-3\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=-1\\m=3\end{cases}}\)
\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\Leftrightarrow\frac{6}{6m}+\frac{mn}{6m}=\frac{1}{2}\Leftrightarrow\frac{6+mn}{6m}=\frac{1}{2}\)
\(\Rightarrow2\left(6+mn\right)=6m\Leftrightarrow6+mn=3m\Leftrightarrow mn-3m+6=0\)
\(\Leftrightarrow m\left(n-3\right)=-6\Leftrightarrow m=\frac{-6}{n-3}=\frac{6}{3-n}\)(*)
Để m nhận giá trị nguyên thì \(\frac{6}{3-n}\in Z\Rightarrow6⋮3-n\Rightarrow\)3-n là ước nguyên của 6 (Do n thuộc Z)
\(\Rightarrow3-n\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
\(\Rightarrow n\in\left\{2;1;0;-3;4;5;6;9\right\}\)
Thay 3 - n vào (*) ta có giá trị tương ứng của m: \(m\in\left\{6;3;2;1;-6;-3;-2;-1\right\}\)
Vậy \(\left(m;n\right)\in\left\{\left(6;2\right);\left(3;1\right);\left(2;0\right);\left(1;-3\right);\left(-6;4\right);\left(-3;5\right);\left(-2;6\right);\left(-1;9\right)\right\}.\)
A.x^2-y^2+2y
b 2x+2y-x^2-xy
c, 3a^2-6ab+3b^2-12
d,x^2 - 25+y^2+2xy
e,^2+2ab+b^2-ac-bc
f, x^2-2x-4y^2-4y
f,x^2y-x^3-9y+9x
h,x^2(x-1)+16(1-x)
n81x^2-4
m,xz-yz-x^2+2xy-y^2
p,x^2+8x+15
k,x^2-x-12
bài 5 tìm x biết
a 2x(x-5)-x(3+2x)=26
b, 5x(x-1)=x-1
c,2(x+
d, (2x-3)^2-(x+5)^5=0
e,3x^2-48x=0
f, x^3+c
bài 6 chứng minh rằng biểu thức
A= x (x-6) +10 luôn dương với mọi x,y.
B=x^2-2x+9y^2-6y+3 luôn dươn với mọi x,y.
bài 7: tìm giá trị nhỏ nhất của biểu thức a,b,c và giá trị lớn nhất của biểu thức D,E.
A = x^2 - 4x +1
B=3x^2+4x+11
C = (x-1)(x+3)(x+2)(x+6)
D= 55-8x-x^2
E= 4x-x^2 +1
Bài9: cho phân thức sau :
____
m bang 3
n bằng 2
Ta có \(\frac{1}{m}\)+\(\frac{n}{6}\)=\(\frac{1}{2}\)
\(\frac{1}{m}\)=\(\frac{1}{2}\)-\(\frac{n}{6}\)
\(\frac{1}{m}\)=\(\frac{3}{6}\)-\(\frac{n}{6}\)
\(\frac{1}{m}\)=\(\frac{3-n}{6}\)
=>m*(3-n)=6
=>3-nEƯ(6)
Ta có bảng giá trị