K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

m bang 3

n bằng 2

15 tháng 5 2016

Ta có \(\frac{1}{m}\)+\(\frac{n}{6}\)=\(\frac{1}{2}\)

            \(\frac{1}{m}\)=\(\frac{1}{2}\)-\(\frac{n}{6}\)

             \(\frac{1}{m}\)=\(\frac{3}{6}\)-\(\frac{n}{6}\)

              \(\frac{1}{m}\)=\(\frac{3-n}{6}\)

=>m*(3-n)=6

=>3-nEƯ(6)

Ta có bảng giá trị

3-n1236-1-2-3-6
m6321-6-3-2-1
n210-34569

 

15 tháng 5 2016

m = 3

n = 1

m = 3

n = 1

27 tháng 2 2018

a) \(\frac{5}{2.m}=\frac{1}{6}+\frac{n}{3}\)  \(\left(m\ne0\right)\)

\(\frac{15}{6.m}=\frac{m}{6.m}+\frac{2.m.n}{6.m}\)

\(\frac{15}{6.m}=\frac{m+2mn}{6.m}\)

\(m+2mn=15\)

\(m\left(1+2n\right)=15\)

\(\Rightarrow m\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

Với m = 1, 1 + 2n = 15 hay n = 7.

Với m = 3, 1 + 2n = 5 hay n = 2

Với m = 5, 1 + 2n = 2 hay n = 1

Với m = 15, 1 + 2n = 1 hay n = 0.

Vậy ta tìm được 4 cặp (m;n) thỏa mãn là: (1;7) , (3;2) , (5;1) và (15;0)

Câu b, c hoàn toàn tương tự.

9 tháng 4 2019

\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)

\(\Rightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)

\(\Rightarrow\frac{2}{n}=\frac{m-1}{2}\)

\(\Rightarrow\hept{\begin{cases}2=m-1\\n=2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)

Câu còn lại làm nốt

9 tháng 4 2019

\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{n}=\frac{m-1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}2=m-1\\n=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=3\\n=2\end{cases}}\)

\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{n}{6}=\frac{1}{m}-\frac{1}{2}\)

\(\Leftrightarrow\frac{n}{6}=\frac{2-m}{2m}\)

\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\6=2m\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\m=3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=2-3\\m=3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=-1\\m=3\end{cases}}\)

8 tháng 7 2018

\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\Leftrightarrow\frac{6}{6m}+\frac{mn}{6m}=\frac{1}{2}\Leftrightarrow\frac{6+mn}{6m}=\frac{1}{2}\)

\(\Rightarrow2\left(6+mn\right)=6m\Leftrightarrow6+mn=3m\Leftrightarrow mn-3m+6=0\)

\(\Leftrightarrow m\left(n-3\right)=-6\Leftrightarrow m=\frac{-6}{n-3}=\frac{6}{3-n}\)(*)

Để m nhận giá trị nguyên thì \(\frac{6}{3-n}\in Z\Rightarrow6⋮3-n\Rightarrow\)3-n là ước nguyên của 6 (Do n thuộc Z)

\(\Rightarrow3-n\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)

\(\Rightarrow n\in\left\{2;1;0;-3;4;5;6;9\right\}\)

Thay 3 - n vào (*) ta có giá trị tương ứng của m: \(m\in\left\{6;3;2;1;-6;-3;-2;-1\right\}\)

Vậy \(\left(m;n\right)\in\left\{\left(6;2\right);\left(3;1\right);\left(2;0\right);\left(1;-3\right);\left(-6;4\right);\left(-3;5\right);\left(-2;6\right);\left(-1;9\right)\right\}.\)

30 tháng 7 2017

1 ) 

m = 3 

n = 2 

biết vậy nhưng ko biết cách giải

12 tháng 8 2019

A.x^2-y^2+2y

b 2x+2y-x^2-xy

c, 3a^2-6ab+3b^2-12

d,x^2 - 25+y^2+2xy

e,^2+2ab+b^2-ac-bc

f, x^2-2x-4y^2-4y

f,x^2y-x^3-9y+9x

h,x^2(x-1)+16(1-x)

n81x^2-4

m,xz-yz-x^2+2xy-y^2

p,x^2+8x+15

k,x^2-x-12

bài 5 tìm x biết

a 2x(x-5)-x(3+2x)=26

b, 5x(x-1)=x-1

c,2(x+

d, (2x-3)^2-(x+5)^5=0

e,3x^2-48x=0

f, x^3+c

bài 6 chứng minh rằng biểu thức

A= x (x-6) +10 luôn dương với mọi x,y.

B=x^2-2x+9y^2-6y+3 luôn dươn với mọi x,y.

bài 7: tìm giá trị nhỏ nhất của biểu thức a,b,c và giá trị lớn nhất của biểu thức D,E.

A = x^2 - 4x +1

B=3x^2+4x+11

C = (x-1)(x+3)(x+2)(x+6)

D= 55-8x-x^2

E= 4x-x^2 +1

Bài9: cho phân thức sau :

____