tính tổng 1/2 x ( 1+ 2) + 1/3x( 1+ 2+3) + 1/4 x ( 1+ 2+ 3+ 4) + ...+ 1/100x (n 1+ 2+ 3+ 4+ 5+ ....+ 100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)
c) x.(1+2+3+4+...+100)=0
x.5050=0
x=0:5050=0
Vậy x=0
d) x.(1+2+3+4+5+...+100)=5050
x.5050=5050
x=1
Vậy x=1
e) x+1+x+2+x+3+x+4+...+x+100=5050
(x+x+x+x+...+x)+(1+2+3+4+...+100)=5050
100 số hạng x
x.100+5050=5050
x.100=0
x=0
Vậy x=0
\(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
Để í ngoặc \(\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]\)
\(\Leftrightarrow\left[\frac{6}{7}+-\frac{6}{7}\right]\)
\(\Leftrightarrow0\)
Vậy biểu thức \(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)có giá trị bằng 0
1,
a) 1^3 + 2^3 + ... + 10^3 = ( x+1) ^2
( 1+2+3+4+5+...+10 ) ^ 2 = ( x+1) ^2
\(\left(\frac{10\times11}{2}\right)^2\)= ( x + 1 ) ^2
55^2 = ( x+1 ) ^2
=> x+1= 55 hoặc x + 1 = -55
x = 54 x = -56
Vậy : x = 54 hoặc x = -56
b, 1+3+5+...+99 = ( x-2 )^2
Đặt 1+3+5+...+99 là : A
=> Số các số hạng của A là : ( 99-1 ) : 2 + 1 = 50
=> A = ( 1+99 ) x 50 :2
A = 2500
Ta có : 2500 = ( x-2)^2
=> (x-2)^2 = 50^2 hoặc (x-2)^2 = (-50)^2
=> x-2=50 x - 2 = -50
x = 52 x = -48
Vậy : x = 52 hoặc x = -48
2,
a)A = 2^0 + 2^1 + 2^2 + ...+2^2006
2A = 2^1 + 2^2 + ... + 2^2007
2A - A = ( 2^1 + 2^2 + ... + 2^2007 ) - ( 2^0 + 2^1 + ... + 2^2006 )
A = 2^2007 - 2^0
A = 2^2007 - 1
Phần b Nhân với 3 làm tương tự
Phần c nhân với 4 lm tương tự
Phần d nhân với 5 làm tương tự
< Chúc bn hok tốt > nhớ k cho mik nhé
b1:
a)=3(1+2+3+4+5+6+7+8+9+10)
=3.55
=165
b)ta xét vế 1:
số các số hạng ở vế 1 là :(99-1):2+1=50 số
tổng số các số hạng ở vế 1 là:(1+99).(50:2)=250
ta có:(x-2).2=250
x-2=250:2
x-2=125
x=127
b2:
A=2(0+1+2+...+2006)
A=2 {[(2006+1):2].(2006+0)}
A=2(1004+(1003.2006))
A=4014044
B=3(1+2+3+...+100)
B=3((100:2).(100+1))
B=3.5050
B=15150
C=4(1+2+...+n)
C=4k(chứ ts đây mik chịu,thông cảm bn nhé!)
D=5(1+2+...+2000)
D=5((2000:2).(2000+1))
D=10005000
1.a) có: \(|x-\frac{3}{2}|,|x+1|,\left|x-2\right|\ge0\Rightarrow4x\ge0\Rightarrow x\ge0\)
\(x\ge0\Rightarrow x-\frac{3}{2}\ge\frac{-3}{2}\Rightarrow\left|x-\frac{3}{2}\right|\ge\left|\frac{-3}{2}\right|=\frac{3}{2}\Rightarrow\left|x-\frac{3}{2}\right|=x-\frac{3}{2}\)
cmtt: \(|x-2|=x-2\)
\(\Rightarrow3x-\frac{3}{2}+1-2=4x\)
\(\Rightarrow3x-\frac{5}{2}=4x\)
\(\Rightarrow x=\frac{-5}{2}\left(ko,t/m\right)\)
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
\(\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{100}\left(1+2+...+100\right)\)
\(=\frac{1+2}{2}+\frac{1+2+3}{3}+...+\frac{1+2+...+100}{100}\)
\(=\frac{\left(1+2\right).2:2}{2}+\frac{\left(1+2+3\right).3:2}{3}+...+\frac{\left(1+2+...+100\right).100:2}{100}\)
\(=\left(1+2\right):2+\left(1+2+3\right):2+....\left(1+2+...+100\right):2\)
\(=\left[\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+...+100\right)\right]:2\)
\(=\left(100.1+99.2+....+1.100\right):2=171700:2=85850\)
Nếu không hiểu cái trong ngoặc tính sao thì báo tớ ;)