Tính giá trị các biểu thức sau :
\(G=lg\left(25^{\log_56}+49^{\log_78}\right)-e^{\ln3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(25^{\dfrac{1}{2}}=5\)
b) \(\left(\dfrac{36}{49}\right)^{-\dfrac{1}{2}}=\dfrac{7}{6}\)
c) \(100^{1,5}=1000\)
\(N=lg\left(\tan1^0\right)+lg\left(\tan2^0\right)+....+lg\left(\tan88^0\right)+lg\left(\tan89^0\right)\)
\(=\left[lg\left(\tan1^0\right)+lg\left(\tan89^0\right)\right]+\left[lg\left(\tan2^0\right)+lg\left(\tan88^0\right)\right]+...+\left[lg\left(\tan44^0\right)+lg\left(\tan46^0\right)\right]+lg\left(\tan45^0\right)\)
\(=lg\left(\tan1^0.\tan89^0\right)+lg\left(\tan2^0.\tan88^0\right)+...+lg\left(\tan44^0.\tan46^0\right)+lg\left(\tan45^0\right)\)
\(=lg\left(\tan1^0.\cot1^0\right)+lg\left(\tan2^0.\cot2^0\right)+.....+lg\left(\tan44^0.\cot44^0\right)+lg\left(\tan45^0\right)\)
\(=lg1+lg1+....+lg1+lg1=0+0+....+0+0=0\)
f) \(\left(1:\frac{1}{7}\right)^2\left[\left(2^2\right)^3:2^5\right]\cdot\frac{1}{49}\)
\(=\left(1\cdot7\right)^2:\left(2^6:2^5\right)\cdot\frac{1}{49}=7^2\cdot\frac{1}{2}\cdot\frac{1}{49}=49\cdot\frac{1}{49}\cdot\frac{1}{2}=\frac{1}{2}\)
g) \(\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{\left(2^2\right)^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^5}\)
\(=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\left(3^5-3^6\right)}{2^{12}\left(3^6+3^5\right)}=\frac{2^{12}\left[3^5\left(1-3\right)\right]}{2^{12}\left[3^5\left(3+1\right)\right]}=\frac{2^{12}\cdot3^5\cdot\left(-2\right)}{2^{12}\cdot3^5\cdot4}=\frac{-2}{4}=-\frac{1}{2}\)
Bài giải
\(f,\text{ }\left(1\text{ : }\frac{1}{7}\right)^2\left[\left(2^2\right)^3\text{ : }2^5\right]\cdot\frac{1}{49}\)
\(=7^2\left(2^6\text{ : }2^5\right)\cdot\frac{1}{7^2}\)
\(=2\)
\(g,\text{ }\frac{4^6\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot9^3+8^4\cdot3^5}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^6}{2^{12}\cdot3^6+2^{12}\cdot3^5}=\frac{2^{12}\cdot3^5\cdot\left(1-3\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}=-\frac{2}{4}=-\frac{1}{2}\)
\(\sqrt{\dfrac{49}{100}}=\dfrac{7}{10}\\ \sqrt{\dfrac{144}{289}}=\dfrac{12}{17}\\ \dfrac{\sqrt{36}}{\sqrt{225}}=\dfrac{6}{15}=\dfrac{2}{5}\\ \dfrac{\sqrt{25}}{\sqrt{121}}=\dfrac{5}{11}\)
a) \(\left( {\frac{7}{3} + 3,5} \right):\left( { - \frac{{25}}{6} + \frac{{22}}{7}} \right) + 0,5\)
\(\begin{array}{l} = \left( {\frac{7}{3} + \frac{7}{2}} \right):\left( { - \frac{{25}}{6} + \frac{{22}}{7}} \right) + \frac{1}{2}\\ = \frac{{35}}{6}:\frac{{ - 25.7 + 22.6}}{{6.7}} + \frac{1}{2}\\ = \frac{{35}}{6}:\frac{{ - 43}}{{7.6}} + \frac{1}{2} = \frac{{35}}{6}.\frac{{7.6}}{{ - 43}} + \frac{1}{2}\\ = \frac{{ - 245}}{{43}} + \frac{1}{2} = \frac{{ - 245.2 + 43}}{{43.2}} = \frac{{ - 447}}{{86}}\end{array}\)
b) \(\frac{{38}}{7} + \left( { - 3,25} \right) - \frac{{17}}{7} + 4,55\)
\(\begin{array}{l} = \left( {\frac{{38}}{7} - \frac{{17}}{7}} \right) + \left( {4,55 - 3,25} \right)\\ = \frac{{38 - 17}}{7} + 1,3 = \frac{{21}}{7} +1,3\\ = 3 + 1,3 = 4,3\end{array}\)
E = 3 10 . − 4 9 + 2 5 − 3 10 . 5 9 + − 3 5 E = 3 10 . − 2 45 − 3 10 . − 2 45 E = 3 10 . − 2 45 − − 2 45 E = 3 10 .0 = 0
\(\dfrac{4^5\cdot10\cdot5^6+25^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{\left(2^2\right)^5\cdot2\cdot5\cdot5^6+\left(5^2\right)^5\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{10}\cdot2\cdot5\cdot5^6+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^{11}\cdot5^7+5^{10}\cdot2^8}{2^8\cdot5^4+5^7\cdot5^2}\\ =\dfrac{2^8\cdot5^7\left(2^3+5^3\right)}{2^5\cdot5^4\left(2^3+5^3\right)}\\ =\dfrac{2^8\cdot5^7}{2^5\cdot5^4}\\ =2^3\cdot5^3\\ =8\cdot125\\ =1000\)
\(G=lg\left(25^{\log_56}+49^{\log_78}\right)-e^{\ln3}=lg\left[\left(5^2\right)^{\log_56}+\left(7^2\right)^{\log_78}\right]-3\)
\(=lg\left(5^{\log_56^2}+7^{\log_78^2}\right)-3\)
\(=lg\left(6^2+8^2\right)-3=lg10^{2-3}=2-3=-1\)