K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\left(1\right)\)

\(Đkxđ:x\ne2009;x\ne2010\)

Đặt \(t=x-2010\left(t\ne0\right)\)

\(\Rightarrow2009-x=-\left(t+1\right)\)

\(\left(1\right)\Leftrightarrow\dfrac{\left(t+1\right)^2-\left(t+1\right)t+t^2}{\left(t+1\right)^2+\left(t+1\right)t+t^2}=\dfrac{19}{49}\)

\(\Leftrightarrow\dfrac{t^2+2t+1-t^2-t+t^2}{t^2+2t+1+t^2+t+t^2}=\dfrac{19}{49}\)

\(\Leftrightarrow\dfrac{t^2+t+1}{3t^2+3t+1}=\dfrac{19}{49}\)

\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)

\(\Leftrightarrow8t^2+8t-30=0\)

\(\Leftrightarrow4t^2+4t-15=0\)

\(\Leftrightarrow\left(4t^2+4t+1\right)-16=0\)

\(\Leftrightarrow\left(2t+1\right)^2=16=4^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2t+1=4\\2t+1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{3}{2}\\t=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2010=\dfrac{3}{2}\\x-2010=-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4023}{2}\\x=\dfrac{4015}{2}\end{matrix}\right.\)

17 tháng 2 2016

H=22010-22009-22008-..-2-1

=>2H=22011-22010-22009-...-22-2

=>2H-H=22011-22010-22009-..-22-22010+22009+22008+..+2+1

=>H=22011-22011+1=1

=>2010H=20101=2010

17 tháng 2 2016

-2010 , ủng hộ mk nha

17 tháng 3 2018

Ta có: \(H=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)

Đặt \(A=2^{2009}+2^{2008}+...+2+1\)

\(\Rightarrow2A=2^{20010}+2^{2009}+...+2^2+2\)

\(\Rightarrow2A-A=\left(2^{20010}+2^{2009}+...+2^2+2\right)-\left(2^{2009}+2^{2008}+...+2+1\right)\)\(\Rightarrow A=\left(2^{2010}-1\right)+\left(2^{2009}-2^{2009}\right)+\left(2^{2008}-2^{2008}\right)+...+\left(2-2\right)\)\(\Rightarrow A=2001-1\)

\(\Rightarrow H=2^{2010}-\left(2^{2010}-1\right)\)

\(\Rightarrow H=2^{2010}-2^{2010}+1=1\)

Thay \(H=1\) vào biểu thức \(2010^H\)

\(\Rightarrow2010^H=2010^1=1\)

Vậy \(2010^H=1\)

27 tháng 3 2018

\(2010^1=1\) ?????

#WTF???

15 tháng 3 2017

A=\(\dfrac{2009^{2010}+1}{2009^{2009}+1}\)

2009A=\(\dfrac{(2009^{2010}+1)+0}{2009^{2010}+1}\)

= 1+\(\dfrac{0}{2009^{2010}+1}\)= 1+0 =1

B=\(\dfrac{2009^{2011}-2}{2009^{2010}-2}\)

2009B=\(\dfrac{2009^{2011}-1}{2009^{2011}-2009}\)

=\(\dfrac{(2009^{2011}-1)-0}{2009^{2011}-2009}\)

= \(1-\dfrac{0}{2009^{2011}-2009}\)

=1-0= 1

Vì 1=1\(\Rightarrow A=B\)

16 tháng 4 2017

Ta có : A = 2009^2010+1/2009^2009+1

Suy ra: 1/2009 A = 1 - 2008/2009^2010+2009 (1)

Lại có:B = 2009^2011 - 2 / 2009^2010 - 2

Suy ra : 1/2009 B = 1 + 4016/2009^2011-4018 (2)

Vì 1 - 2008/2009^2010+2009 < 1 + 4016/2009^2011-4018 (3)

Từ (1);(2) và (3) suy ra : A<B