K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

gọi d là UCLN của n+2 và 2n+3

ta có n+2 chia hết cho d=> 2(n+2)chia hết cho d => 2n+4 chia hết cho d(1)

ta có 2n+3 chia hết cho d (2)

lấy (1)-(2) ta có (2n+4)-(2n+3 )chia hêt cho d

=> 1 chia hết cho d vậy d=(1; -1)

vậy \(\frac{n+2}{2n+3}\) tối giản

 

9 tháng 5 2016

B=\(\frac{n+1}{n-2}\)

a. để B là phân số thì n-2 khác 0 => n khác 2

b.B=\(\frac{n+1}{n-2}\)\(\frac{n-2+3}{n-2}\)\(\frac{n-2}{n-2}\)+\(\frac{3}{n-2}\)=1+\(\frac{3}{n-2}\)

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để B nguyên thì n=(-1;1;3;5)

17 tháng 3 2022

a, phân số 3n -5 / n - 2 là số nguyên khi : 3n - 5 chia hết cho n - 2 => ( 2n - 5 ) chia hết cho 2x( n - 2 )

                                                                                                                         => 2n - 5 chia hết cho 2n - 4 

                                                                                                                         => (2n - 4) - 1 chia hết cho 2n - 4  

                                                                                                                         => 1 chia hết cho n - 2   

                                                                                                                          =>   1 chia hết cho n - 2 

                                    => n - 2 là ước của 1.  ta có Ư(1) = {  -1 ; 1  }

                                   =>    n - 2 = -1 => n = 1 ( thỏa mãn ) 
                                   =>    n - 2 = 1 => n = 3 ( thỏa mãn )

                                       ta tìm được n = { 3 ; 1}

3 tháng 5 2016

sao ma kho 

27 tháng 1 2022

31 tháng 10 2016

1.

a) \(A=2+\frac{1}{n-2}\)

\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)

b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)

\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)

\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)

\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy A là phân số tối giản.

2.

- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )

- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )

- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3

Vậy p - 2014 là hợp số

31 tháng 10 2016

Cám ơn mày nha Trân

5 tháng 1 2020

a, Đk: n\(\ne\)3

b, Thay n vào B rồi tìm bn nha ^-^

c, Để \(B\in Z\)thì n-3\(\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)

Ta có bảng:

n-3-4-2-1124
n-112457

Vậy n={-1,1,2,4,5,7} thì B nguyên

6 tháng 2 2022

Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)

a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)

Vậy \(n\ne-2\) thì \(A\) là phân số.

b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:

\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)

c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)

Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)