chứng minh rằng Q(x)=x^4+2015x^2+2016 không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Q(x) = x4 + 2015x2 + 2016
Ta có: x4 \(\ge\) 0 ; 2015x2 \(\ge\) 0 ; 2016 > 0
Nên Q(x) = x4 + 2015x2 + 2016 > 0 <=> Q(x) \(\ne\) 0
Vậy Q(x) vô nghiệm
Có: \(x^4\ge0\) với mọi x
\(2015x^2\ge0\) với mọi x
2016>0
\(\Rightarrow x^4+2015x^2+2016>0\)
Vậy đa thức Q(x) ko có nghiệm
a) \(P\left(x\right)=0\Rightarrow x^{2016}-x^{2014}=0\Rightarrow x^{2014}\left(x^2-1\right)=0\)
TH1: \(x^{2014}=0\Rightarrow x=0\)
TH2: \(x^2-1=0\Rightarrow x=\pm1\)
Vậy \(P\left(x\right)\) có nghiệm là \(x=0,x=1,x=-1\)
b) Xét \(x< 0\)
Ta có: \(x^{2016}>0\Rightarrow-x^{2016}< 0\); \(2015x< 0\)
\(\Rightarrow Q\left(x\right)=-x^{2016}+2015x-1< 0\)
Vậy \(Q\left(x\right)\) không có nghiệm âm
a, Đặt \(P\left(x\right)=x^{2016}-x^{2014}=0\Leftrightarrow x^{2014}\left(x^2-1\right)=0\Leftrightarrow x=0;x=-1;x=1\)
Chứng tỏ rằng đa thức Q(x) = x4 + 2015x2 + 2016 không có nghiệm.
Ta có x4 \(\ge\)0 \(\forall\)x
và 2015.x2 \(\ge\)0 \(\forall\)x
->x4 + 2015x2 + 2016 \(\ge\)0 \(\forall\)x
hay đa thức Q(X) ko có nghiệm.
Để phương trình có nghiệm thì f(x)=0
⇔x2-2x+2016=0
⇔ (x-1)2+2015=0
⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)
Vậy,phương trình vô nghiệm
F(x)=x2−2x+2016F(x)
F(x)=x2−2x+1+2015
F(x)=x2−x−x+1+2015
=x(x−1)−(x−1)+2015
=(x−1)^2+2015
Vì (x−1)2+2015≥2015>0 với mọi x ∈ R
=>F(x) vô nghiệm (đpcm)
a) Nghiệm bằng 1 nha: 1^2016-1^2014=1-1=0
b)Không có nghiệm âm còn vì sao thì đợi lhi bạn k đug cho mk xog thì mk giải thick cho nha!
x2016-x2014=0
x2014*(x2-1)=0
TH1:
x2014=0
x=0
TH2
x2-1=0
x2=1
x=1
k mình nha
\(F\left(x\right)=x^2-2x+2016\)
\(F\left(x\right)=x^2-2x+1+2015\)
\(F\left(x\right)=x^2-x-x+1+2015=x\left(x-1\right)-\left(x-1\right)+2015=\left(x-1\right)^2+2015\)
Vì \(\left(x-1\right)^2+2015\ge2015>0\) với mọi x E R
=>F(x) vô nghiệm (đpcm)
Q(x)=x4+2015x2+2016
có: x4\(\ge\)0 với mọi x
2015x2 \(\ge\)0 với mọi x
2016>0
=> x4+2015x2+2016>0
Q(x) ko có nghiệm
Ta có x^4 lớn hơn hoặc bằng 0 vs mọi x thuộc N
2015x^2 lớn hơn hoặc bằng 0 vs mọi x thuộc N
2016>0=)x^4+2015x^2+2016 >0
Vậy Q(x) hk có nghiệm