Khi nào 99 = 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{4}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{99x100}\)
\(\frac{A}{4}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{100-99}{99x100}\)
\(\frac{A}{4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{A}{4}=1-\frac{1}{100}=\frac{99}{100}=>A=\frac{4x99}{100}=\frac{99}{25}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
Đặt E = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{100}=\frac{99}{100}\)
\(50C=\left(\frac{1}{100}-\frac{99}{100}\right).5-=-\frac{49}{50}.50=-49\)
(1/2+1/3+1/4+...+1/100)/(99/1+98/2+97/3+...+1/99)
=(1/2+1/3+1/4+...+1/100)/(1+100/2+100/3+100/4+....+100/99)
=(1/2+1/3+1/4+...+1/100)/100*(1/100+1/99+1/98+...+1/4+1/3+1/2)
=1/100
chỗ 99/1+99/2+99/3+...+1/99 hình như đề bài sai đề bài đúng hình như là trên đã sửa rồi
Ta có:
99.99= (98+1) . 99 = 98.99+99
98.100 = 98.( 99+1) = 98.99 + 98
Do 98.99+99 > 98.99 + 98
=> 99.99 > 98.100
99=100
199=1100
vì 1=1
=>99=100
tớ không biết
mà bài của cậu đâu phải của lớp 1