Cho 2đg thg (d1):y=(m-1)X+1
(d2):y=(1-3m)x-2
a) CM đtg d1 đi qua 1 đ cố định A
b)CM đtg d2 đi qua 1 đ cố định B
c)đg thg d1 cắt d2 tại C.Tìm m để tam giác ABC vuông có diện tích nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\Rightarrow3=4m.2-m-5\Leftrightarrow m=\dfrac{8}{5}\)
b/
Tọa độ A là \(A\left(x_0;y_0\right)\)
\(\Rightarrow y_0=4mx_0-m-5\forall m\)
\(\Leftrightarrow\left(4x_0-1\right)m-\left(y_0+5\right)=0\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_0-1=0\\y_0+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{4}\\y_0=-5\end{matrix}\right.\)
=> d1 luân đi qua điểm A cố định \(A\left(\dfrac{1}{4};-5\right)\forall m\)
Tọa độ B là \(B\left(x_1;y_1\right)\)
\(\Rightarrow y_1=\left(3m^2+1\right)x_1+m^2-4\forall m\)
\(\Leftrightarrow3m^2x_1+x_1+m^2-4-y_1=0\forall m\)
\(\Leftrightarrow\left(3x_1+1\right)m^2+x_1-y_1-4=0\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x_1+1=0\\x_1-y_1-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{3}\\y_1=-\dfrac{13}{3}\end{matrix}\right.\)
=> d2 luân đi qua điểm B cố định \(B\left(-\dfrac{1}{3};-\dfrac{13}{3}\right)\)
d/ d1//d2 khi
\(\left\{{}\begin{matrix}4m=3m^2+1\\-m-5\ne m^2-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\\m^2+m+1\ne0\end{matrix}\right.\)
Ta có \(m^2+m+1>0\forall m\)
\(\Rightarrow\left[{}\begin{matrix}m_1=1\\m_2=\dfrac{1}{3}\end{matrix}\right.\)
e/
\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) tìm m để phương trình có nghiệm
Tìm giao
\(\Rightarrow4mx-\left(m+5\right)=\left(3m^2+1\right)x+m^2-4\) khi m=2
Thay m=2 tìm x rồi thay vào d1 hoặc d2 để tìm y
a)
\(\left(d1\right):y=mx+m-3=m\left(x+1\right)-3\Rightarrow\left\{\begin{matrix}x=-1\\y=-3\end{matrix}\right.\) với mọi m:
ĐIểm cố dịnh là A(-1,-3)
\(\left(d1\right):y=\dfrac{1}{m}x+\dfrac{1-m}{m}=\dfrac{1}{m}\left(x+1\right)-1\Rightarrow voi..x=-1...thi...y=-1...voi..\forall m\ne0\)
ĐIểm cố định B(-1,-1)
Tọa độ giao điểm của d1,d2 là nghiệm của hpt:
\(\left\{{}\begin{matrix}y=x+2\\y=-2x+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-2\\-2x-y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Thay tọa độ giao điểm trên vào d3 ta được: 3=3.1(luôn đúng)
Vậy d1,d2,d3 đồng quy
b, Thay tọa độ giao điểm trên vào d4 ta được
3=m+m-5
=>3=2m-5
=>2m=8
=>m=4
Vậy khi m=4 thì 4 đường thẳng trên đồng quy
c, Gọi điểm cố định mà d4 luôn đi qua với mọi m là A(x0;y0)
=>y0=mx0+m-5 \(\forall m\)
\(\Leftrightarrow\)mx0+m-5-y0=0 \(\forall m\)
\(\Leftrightarrow\)(x0+1)m-(5+y0)=0 \(\forall m\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\5+y_0=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-5\end{matrix}\right.\)
Vậy đường thẳng trên luôn đi qua A(-1;-5) \(\forall m\)
Gọi \(A\left(a;1-a\right)\) ; \(B\left(b;2b-1\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-1;2-a\right)\\\overrightarrow{MB}=\left(b-1;2b\right)\end{matrix}\right.\)
\(2\overrightarrow{MA}+\overrightarrow{MB}=0\Leftrightarrow\left(2a-2;4-2a\right)+\left(b-1;2b\right)=\left(0;0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2+b-1=0\\4-2a+2b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\-2a+2b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{5}{3}\\b=-\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow A\left(\frac{5}{3};-\frac{2}{3}\right);B\left(-\frac{1}{3};-\frac{5}{3}\right)\) \(\Rightarrow\overrightarrow{AB}=\left(2;1\right)\)
Phương trình AB:
\(1\left(x-\frac{5}{3}\right)-2\left(y+\frac{2}{3}\right)=0\Leftrightarrow x-2y-3=0\)
a: Để d1//d2 thì \(\left\{{}\begin{matrix}3m^2+1-4m=0\\-m-5< >m^2-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(m-1\right)=0\\m^2-9+m+5< >0\end{matrix}\right.\)
=>m=1/3 hoặc m=1
b: Để hai đường cắt nhau thì (3m-1)(m-1)<>0
hay \(m\notin\left\{\dfrac{1}{3};1\right\}\)