Các điểm A'(-4; 1), B'(2;4), C(2, -2) lần lượt là trung điểm của các cạnh BC, CA và AB của tam giác ABC. Tìm tọa độ đỉnh của tam giác ABC và A’B’C’ trùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D
a/ Có 4 đường thẳng, gồm: AB, AC, AD và BD=BC=CD
b/ Có tất cả 3 tam giác gồm: ABC, ABD, ACD
Lần lượt thay tọa độ các điểm M, O, P, Q, A vào hàm số f ( x ) = - 1 4 x ta được:
+) Với M (0; 4), thay x = 0; y = 4 ta được 4 = - 1 4 .0 ⇔ 4 = 0 (vô lý) nên M ∉ (C)
+) Với O (0; 0), thay x = 0 ; y = 0 ta được 0 = - 1 4 .0 ⇔ 0 = 0 (luôn đúng) nên O ∈ (C)
+) Với P (4; −1), thay x = 4 ; y = − 1 ta được −1 = - 1 4 . 4 ⇔ 1 = −1 (luôn đúng) nên P ∈ (C)
+) Với Q (−4; 1), thay x = − 4 ; y = 1 ta được 1 = - 1 4 .(−4) ⇔ 1 = 1 (luôn đúng) nên Q ∈ (C)
+) Với A (8; −2), thay x = 8 ; y = − 2 ta được −2 = - 1 4 .8 ⇔ −2 = −2 (luôn đúng) nên A ∈
Đáp án cần chọn là: A
Câu 1: \(9^6\cdot7-3^{12}\cdot4\)
\(=3^{2^6}\cdot7-3^{12}\cdot4\)
\(=3^{12}\cdot7-3^{12}\cdot4\)
\(=3^{12}\left(7-4\right)\)
\(=3^{12}\cdot3\)
\(=3^{13}\)
Câu 2:
a) Số đường thẳng đi qua 2 điểm là: \(3+2+1=6\left(đường\right)\)
b) Các đường thẳng đó là: \(AB;AC;AD;BC;BD;CD\)
A’ là trung điểm của cạnh BC nên -4 = (xB+ xC)
=> xB+ xC = -8 (1)
Tương tự ta có xA+ xC = 4 (2)
xB+ xC = 4 (3)
=> xA+ xB+ xC =0 (4)
Kết hợp (4) và (1) ta có: xA= 8
(4) và (2) ta có: xB= -4
(4) và (3) ta có: xC = -4
Tương tự ta tính được: yA = 1; yB = -5; yC = 7.
Vậy A(8;1), B(-4;-5), C(-4; 7).
Gọi G la trọng tâm tam giác ABC thì
xG= = 0; yG = = 1 => G(0,1).
xG’= ; yG’ = = 1 => G'(0;1)
Rõ ràng G và G’ trùng nhau.