Giai bpt :
\(\sqrt{x^2-4x+3}-\sqrt{2x^2-3x+1}\ge x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-3\right)}-\sqrt{\left(x-1\right)\left(2x-1\right)}-\left(x-1\right)=0\)
- Với \(x=1\) là 1 nghiệm
- Với \(x\le\frac{1}{2}\)
\(\Leftrightarrow\sqrt{3-x}-\sqrt{1-2x}+\sqrt{1-x}=0\)
\(\Leftrightarrow\sqrt{3-x}+\sqrt{1-x}=\sqrt{1-2x}\)
\(\Leftrightarrow4-2x+2\sqrt{x^2-4x+3}=1-2x\)
\(\Leftrightarrow2\sqrt{x^2-4x+3}=-3\left(vn\right)\)
- Với \(x\ge3\)
\(\Leftrightarrow\sqrt{x-3}-\sqrt{2x-1}-\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-3}=\sqrt{2x-1}+\sqrt{x-1}\)
\(\Leftrightarrow x-3=3x-2+2\sqrt{2x^2-3x+1}\)
\(\Leftrightarrow2\sqrt{2x^2-3x+1}=-2x-1\left(vn\right)\)
Vậy pt có nghiệm duy nhất \(x=1\)
\(\sqrt{x-2x^2+1}>1-x\)
TH1: \(1-x\ge0\Rightarrow x\le1\)
\(\sqrt{x-2x^2+1}>1-x\\ \Leftrightarrow x-2x^2+1>x^2-2x+1\\ \Leftrightarrow-2x^2>-2x\\ \Leftrightarrow-2x^2+2x>0\\ \Leftrightarrow-2x\left(x-1\right)>0\\ \Leftrightarrow x\left(x-1\right)< 0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>1\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< 1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\left(0;1\right)\end{matrix}\right.\)
TH2: \(1-x< 0\Leftrightarrow x>1\)
Tương tự ........
a/ ĐKXĐ \(x\ge1\)
\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)
\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)
\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)
\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)
Vậy nghiệm của BPT là \(1\le x< 2\)
b/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)
\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)
\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)
\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)
\(\Rightarrow3\le x< 4\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)
\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)
- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge\frac{2}{3}\) hai vế ko âm
\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)
\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)
Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)
Biết là hơi làm phiền nhưng anh có thể giúp em được k ạ :
Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến
1. Đợi chút t tìm cách ngắn gọn.
2. ĐK: \(\left\{{}\begin{matrix}2x^2+8x+6\ge0\\x^2-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-3\\x\ge1\\x=-1\end{matrix}\right.\) (*)
BPT\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\3x^2+8x+5+2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\le\left(2x+2\right)^2\left(1\right)\end{matrix}\right.\)
Giải (1) \(\Leftrightarrow x^2-1-2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\ge0\)
\(\Leftrightarrow\sqrt{x^2-1}\left(\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\right)\ge0\)
TH1: \(\sqrt{x^2-1}=0\Leftrightarrow x=\pm1\) (tm)
TH2: \(x^2-1\ne0\)
\(\Leftrightarrow\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\ge0\)
\(\Leftrightarrow\sqrt{x^2-1}\ge2\sqrt{2x^2+8x+6}\)
\(\Leftrightarrow x^2-1\ge8x^2+32x+24\)
\(\Leftrightarrow7x^2+32x+25\le0\)
\(\Leftrightarrow-\frac{25}{7}\le x\le-1\) kết hợp đk (*) và đk để giải bpt
=>\(x=-1\)
Vậy \(x=\pm1\)
3. ĐK: \(x\ge\frac{4}{5}\)
\(BPT\Leftrightarrow\sqrt{5x-4}-\sqrt{3x-2}+\sqrt{4x-3}-\sqrt{2x-1}>0\)
\(\Leftrightarrow\frac{2x-2}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{2x-2}{\sqrt{4x-3}+\sqrt{2x-1}}>0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{1}{\sqrt{4x-3}+\sqrt{2x-1}}\right)>0\)
\(\Leftrightarrow x-1>0\) \(\Leftrightarrow x>1\)
Vậy \(x>1\)
sao k ai trả lời zậy ta
Nhấn máy tính:
+ giải hpt x2-4x+3: mode=> 5:EQN=> số 3=> 1=> = => -4 => = => 3=> X1=3 => = => X2=1
=> Thay vào=> Đưa vô căn bậc 2.
+ giải hpt 2x2 -3x+1 tương tự như trên.
=> Sau đó thay vô. tính ra
Xin lỗi mình chỉ biết nhiêu đây. lớp 7. Thông cảm.