K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

A B C D M N a b

22 tháng 3 2016

Đặt \(\overrightarrow{DA}=\)\(\overrightarrow{a}\) , \(\overrightarrow{DB}=\overrightarrow{b},\overrightarrow{DC}=\overrightarrow{c}\) với \(\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=\left|\overrightarrow{c}\right|=a\) và \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=\frac{a^2}{2}\) như hình vẽ

Do M là trung điểm AB nên  \(\overrightarrow{DM}=\frac{1}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}\)

do đó  \(\overrightarrow{CM}=\frac{1}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}-\overrightarrow{c}\)

Xét điểm \(N\in AC\), giả sử \(\overrightarrow{NA}=t.\overrightarrow{NC}\)\(t\ne1\). Khi đó \(\overrightarrow{DN}=\frac{\overrightarrow{a}-t\overrightarrow{c}}{1-t}\)

Vậy \(DN\perp CM\Rightarrow\overrightarrow{DN}.\overrightarrow{CM}=0\Leftrightarrow\left(\overrightarrow{a}+\overrightarrow{b}-2\overrightarrow{c}\right)\left(\overrightarrow{a}-t\overrightarrow{c}\right)=0\Leftrightarrow t=\frac{1}{2}\)

Từ đó , với \(N\in AC\) mà \(\overrightarrow{NC}=-2\overrightarrow{NA}\) thì \(DN\perp CM\) và khi đó  

\(\overrightarrow{DN}=\frac{2}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow{c}\)

Giả sử  UV là đoạn vuông góc chung của CM, DN với \(U\in CM,V\in DN\) và \(\overrightarrow{CU}=u\overrightarrow{CM}=\frac{u}{2}.\overrightarrow{a}+\frac{u}{2}.\overrightarrow{b}-u.\overrightarrow{c},\overrightarrow{DV}=v.\overrightarrow{DN}=\frac{2v}{3}.\overrightarrow{a}+\frac{v}{3}.\overrightarrow{c}\)

Từ đó suy ra 

\(\overrightarrow{UV}=\overrightarrow{DV}-\left(\overrightarrow{DC}+\overrightarrow{CU}\right)\)

        \(=\left(\frac{2v}{3}-\frac{u}{2}\right)\overrightarrow{a}-\frac{u}{2}\overrightarrow{b}+\left(\frac{v}{3}+u-1\right)\overrightarrow{c}\)

Điều kiện \(\overrightarrow{UV}.\overrightarrow{CM}=0\) tương đương với :

\(\frac{1}{2}\left(\frac{2v}{3}-\frac{u}{2}\right)-\frac{u}{4}-\left(\frac{v}{3}+u-1\right)+\frac{1}{4}\left(\frac{2v}{3}-\frac{u}{2}\right)-\frac{1}{2}\left(\frac{2v}{3}-\frac{u}{2}\right)+\frac{u}{4}+\frac{1}{4}\left(\frac{v}{3}+u-1\right)+\frac{1}{4}\left(\frac{v}{3}+u-1\right)=0\)

Từ đó ta thu được \(u=\frac{2}{3}\)

Điều kiện \(\overrightarrow{UV}.\overrightarrow{DN}=0\) tương đương với :

\(\frac{2}{3}\left(\frac{2v}{3}-\frac{u}{2}\right)-\frac{u}{6}+\frac{1}{3}\left(\frac{v}{3}+u-1\right)+\frac{1}{6}\left(\frac{2v}{3}-\frac{u}{2}\right)-\frac{u}{12}+\frac{1}{3}\left(\frac{v}{3}+u-1\right)=0\)

Từ đó ta thu được \(v=\frac{6}{7}\)

Khi đó, \(\overrightarrow{UV}=\frac{5}{21}\overrightarrow{a}-\frac{7}{21}\overrightarrow{b}-\frac{1}{21}\overrightarrow{c}=\frac{1}{21}\left(5\overrightarrow{a}-7\overrightarrow{b}-\overrightarrow{c}\right)\)

Suy ra \(d\left(CM,DN\right)=UV=\sqrt{\left|\overrightarrow{UV}\right|^2}=\frac{a\sqrt{42}}{21}\)

 

 

 

 

 

2 tháng 1 2017

Đáp án là B

5 tháng 12 2017

30 tháng 10 2019

Đáp án A.

29 tháng 10 2017

3 tháng 6 2018

A B C D M P

Vẽ \(NP\perp AM\) tại P

\(\hept{\begin{cases}\text{có }AB=a\Rightarrow AM=\sqrt{AB^2+BN^2}=\frac{\sqrt{5}}{2}a\\\text{từ }CM:AM=AD=a\end{cases}}\Rightarrow MP=\frac{-2+\sqrt{5}}{2}a\) 

Đặt ND = NP, ta có:

\(x^2+MP^2=MC^2+CN^2\)

\(x^2+\left(\frac{-2+\sqrt{5}}{2}\right)^2a^2=\frac{a^2}{4}+\left(a-x\right)^2\)

\(\Leftrightarrow x^2+\frac{9-4\sqrt{5}}{4}a^2=\frac{a^2}{4}+a^2-2ax+x^2\)

\(\Leftrightarrow a^2\left(\frac{9-4\sqrt{5}}{4}-\frac{1}{4}-1\right)=-2ax\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)a^2=-2ax\)

\(\Leftrightarrow x=\frac{\sqrt{5}-1}{2}a\Rightarrow CN=\frac{3-\sqrt{5}}{2}a\)

\(\Rightarrow MN=\sqrt{CN^2+MC^2}\)

     \(MN=\sqrt{\frac{15-6\sqrt{5}}{4}a^2}\)

    \(MN=\sqrt{\frac{15-6\sqrt{5}}{2}}a\)

P/s: Ko chắc

30 tháng 6 2017

Đáp án B

Giả thiết có  

 

22 tháng 6 2023

a)Độ dài cạnh AN là: 9 * 2/3  = 6 (cm)

 Diện tích hình thang ANCD là: (6+9)*9/2 = 67,5 (cm2)

22 tháng 6 2023

rồi làm thế câu b bay đâu mất ròi?