K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm. 

8 tháng 3 2016

-Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm. 

kham khảo ở đây nha

Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath

vào thống kê hỏi đáp của mình có chữ màu xanh nhấn zô đó = sẽ ra 

hc tốt ~:B~

20 tháng 6 2019

Tham khảo câu hỏi tương tự:

https://olm.vn/hoi-dap/detail/85818524717.html

2 tháng 8 2017

n12-n8-n4+513 = (n12-n8)-(n4-1)+512 = n8(n4-1)-(n4-1)+512 = (n4-1)(n8-1)+512 = (n4-1)2(n4+1)+512 = (n4-1)2(n4+1)+512 =

= (n-1)2(n+1)2(n2+1)2(n4+1)+512

Ta có: 512=29

Nhận thấy 512 chia hết cho 512

Xét: n=1 => (n-1)2(n+1)2(n2+1)2(n4+1)=0 => n12-n8-n4+513=512 chia hết cho 512

n>1, n lẻ => (n-1)2; (n+1)2; (n2+1)2 và (n4+1) là các số chẵn và trong đó có ít nhất 2 số chia hết cho 4 

=> (n-1)2(n+1)2(n2+1)2(n4+1) là số có dạng: (2k)5(4n)2 = 25.24.k5.n5 = 512.a chia hết cho 512

=> (n-1)2(n+1)2(n2+1)2(n4+1)+512 chia hết cho 512 

=> n12-n8-n4+513 Chia hết cho 512 với mọi n lẻ

2 tháng 8 2017

í lộn 6, 7 và 8 nha bạn

14 tháng 2 2016

bai toan nay kho quá

9 tháng 11 2015

a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3) 
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z) 
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4) 
= 2(k+1)2(k+2)= 4(k+1)(k+2) 
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2. 
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2

=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)

6 tháng 8 2016

a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3

=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8

vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ

nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8

nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do 

18 tháng 9 2019

b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

15 tháng 2 2016

Ta có:  Vì  \(n\)  là số lẻ (theo giả thiết) nên  \(n\)  sẽ có dạng  \(2k+1\)

Các bước biến đổi:

\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)

                                       \(=\left(n^4-1\right)\left(n^8-1\right)\)

                                       \(=\left(n^4-1\right)^2\left(n^4+1\right)\)

\(n^{12}-n^8-n^4+1=\left(n^2-1\right)^2\left(n^2+1\right)^2\left(n^4+1\right)\)

Khi đó, ta xét  \(\left(n^2-1\right)^2\)  với  \(n=2k+1\)  thì  \(\left(n^2-1\right)^2\)  sẽ trở thành:  

\(\left(n^2-1\right)^2=\left(n-1\right)^2\left(n+1\right)^2=\left(2k+1-1\right)^2\left(2k+1+1\right)^2=4k^2\left(2k+2\right)^2=16k^2\left(k+1\right)^2=16\left[k\left(k+1\right)\right]^2\)

chia hết cho  \(16\)

Lại có:  \(k\left(k+1\right)\)  chia hết cho  \(2\)  (vì là tích của hai số nguyên liên tiếp) nên  \(\left[k\left(k+1\right)\right]^2\)   chia hết cho  \(4\)

Do đó,  \(\left(n^2-1\right)^2\)  chia hết cho  \(16.4=64\)  \(\left(1'\right)\)

Mặt khác,  với  \(n=2k+1\)  \(\Rightarrow\)  \(\left(n^2+1\right)^2\)  và  \(n^4+1\)  lần lượt là các số chẵn

nên  \(\left(n^2+1\right)^2\)  chia hết cho  \(2^2=4\)   \(\left(2'\right)\)

   và   \(n^4+1\)  chia hết cho  \(2\)   \(\left(3'\right)\)

Từ  \(\left(1'\right);\)  \(\left(2'\right)\)  và  \(\left(3'\right)\)  suy ra  \(n^{12}-n^8-n^4+1\)  chia hết cho \(512\)

24 tháng 4 2020

cần rất gấp

mọi người giúp mình ha:))

mình sẽ k cho ai trả lời nhanh và đúng nhất

24 tháng 4 2020

b) \(n^3+3n^2-n-3=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n^2-1\right)\left(n+3\right)\)

Vì lẻ2=lẻ; lẻ + lẻ= chẵn; lẻ-1=chẵn; chẵn x chẵn =chẵn

=> (n2-1)(n+3) chia hết cho 48