Phan tich thanh nhan tu
x^3+y^3+z^3-3xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz\) \(=\left(x+y\right)^3-3x^2y-3xy^2+z^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
HỌC TỐT NHA!
ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
x3+y3+z3-3xyz
= (x+y)3-3xy(x+y)+z3-3xyz
= [(x+y)3+z3]-[3xy(x+y)+3xyz]
=(x+y+z)[(x+y)2-(x+y).z+z2]-3xy(x+y+z)
=(x+y+z)(x2+y2+z2+2xy-xz-yz) -3xy(x+y+z)
= (x+y+z)(x2+y2+z2-xy-xz-yz)
\(B=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-xz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
http://olm.vn/hoi-dap/question/102127.html
bạn tham khảo tại đây
áp dụng hằng đẳng thức lập phương của 1 hiệu nhé chúc bạn may mắn ^_^ !