Cho 4 đường thẳng phân biệt và gọi S là tập hợp tất cả các giao điểm của các đường thẳng ấy. Số phần tử nhiều nhất nhất có thể của S là...
Ghi lời giải giùm em nha mấy anh chụy...Kíu em zới!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 đường thẳng phân biệt ta có 3 giao điểm. Đường thẳng thứ 4 cắt 3 đường thẳng kia nhiều nhất tại 3 điểm nữa.
Vậy nhiều nhất có 6 điểm
bài 2 nè:
Ta có: \(\frac{10+x}{17+x}\)= \(\frac{3}{4}\)
==> (10+x)x4 = (17+x)x3
=> 40+ 4x = 51 + 3x
=> 51 - 40 = 4x - 3x
=> x = 11
nếu bạn cho tiền thì ib mềnh nha :)
Phương trình hoành độ giao điểm: - x 2 + 2 x + 3 = m x ⇔ x 2 + m - 2 x - 3 = 0 1
Dễ thấy (1) luôn có 2 nghiệm phân biệt vì a c = 1 . - 3 = - 3 < 0
Khi đó (d) cắt (P) tại hai điểm phân biệt A x 1 ; m x 1 , B x 2 ; m x 2 , với x 1 , x 2 là nghiệm phương trình (1). Theo Viét, có: x 1 + x 2 = 2 - m , x 1 x 2 = - 3 x 1 x 2 = - 3
I là trung điểm
A B ⇒ I = x 1 + x 2 2 ; m x 1 + m x 2 2 = 2 − m 2 ; − m 2 + 2 m 2
Mà I ∈ ( Δ ) : y = x − 3 ⇒ − m 2 + 2 m 2 = 2 − m 2 − 3 ⇔ m 2 − 3 m − 4 = 0
⇔ m = − 1 = m 1 m = 4 = m 2 ⇒ m 1 + m 2 = 3
Đáp án cần chọn là: D
Mặt cầu (S) có tâm I (1;0;-2) và bán kính R=2.
Đường thẳng d đi qua điểm N (2; 0; m-1) và có véc tơ chỉ phương
Điều kiện để d cắt (S) tại hai điểm phân biệt là d (I; (d))<R
Khi đó, tiếp diện của (S) tại A và B vuông góc với IA và IB nên góc giữa chúng là góc (IA;IB).
Vậy T= {-3;0}. Tổng các phần tử của tập hợp T bằng -3.
Tọa độ A là:
x=0 và y=0(2m+1)+m-2=m-2
=>OA=|m-2|
Tọa độ B là:
y=0 và (2m+1)x+m-2=0
=>x=(2-m)/(2m+1) và y=0
=>OB=|(m-2)/(2m+1)|
Để ΔOAB cân thì OA=OB
=>|m-2|=|m-2|/|2m+1|
=>|m-2|(1-1/|2m+1|)=0
=>m-2=0 hoặc 2m+1=-1 hoặc 2m+1=1
=>S={2;-1;0}
Tổng các phần tử của S là 1
2 đường thẳng thì cắt nhau tại 1 điểm
n đường thẳng sẽ cắt nhau tại \(C^{n_{ }}_2\) điểm ( tổ hợp nhé)
vậy 4 đường sẽ có \(C^4_2\)= 6 điểm
thanks, nhưng e ko hiểu, mới lớp 6 mà