Chứng minh rằng n1001-n chia hết cho 3 với mọi nEN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n2 + 5n + 5 = n.(n + 5) + 5 chia hết cho 5
=> n.(n + 5) chia hết cho 5
=> n chia hết cho 5 hoặc n + 5 chia hết cho 5
=> n chia hết cho 5
Vậy nếu n chia hết cho 5 thì n2 + 5n + 5 chia hết cho 5
Ví dụ : nếu n = 5 ta có n2 + 5n + 5 = 55 chia hết cho 5
Bạn xem lại đề
a) (2n+8).(5n-5)=2(n+4).5(n-1)=10(n+4)(n-1) chia hết cho 10
b) Ta có 2n+1 và 4n+5 đều là số lẻ nên (2n+1)(4n+5) là số lẻ
=> (2n+1)(4n+5) không chia hết cho 2
b) a(a+1)(a+2)
+) Giả sử a là số lẻ
=> a+1 là số chẵn và chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
+) Giả sử a là số chẵn
=> a chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
Vậy a(a+1)(a+2) chia hết cho 2 với mọi a thuộc N (1)
+) Giả sử a không chia hết cho 3 nên a chia 3 dư 1 hoặc dư 2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Vậy a(a+1)(a+2) chia hết cho 3 với mọi a thuộc N (2)
Từ (1) và (2) => a(a+1)(a+2) chia hết cho 2 và 3 với mọi a thuộc N
_HT_
a) 1980a - 1995b
Ta có: 1980a luôn có chữ số tận cùng là 0 vì 0 nhân với số nào cũng đều có chữ số tận cùng là 0
1995b sẽ có chữ số tận cùng là 0 nếu b là số chẵn và ngược lại, 1995b sẽ có chữ số tận cùng là 5 nếu b là số lẻ
Từ đó => 1980a-1995b có tận cùng là : 0-5 = 5 hoặc 0-0= 0
Mà số có chữ số tận cùng là 0 hoặc 5 thì đều chia hết cho 5
Vậy 1980a-1995b chia hết cho 5 với mọi a,b thuộc N (1)
Ta có: 1980 chia hết cho 3 => 1980a cũng chia hết cho 3 với mọi a
1995 chia hết cho 3 => 1995b cũng chia hết cho 3 với mọi b
Vậy 1980a-1995b chia hết cho 3 với mọi a,b thuộc N (2)
Từ (1) và (2) => 1980a-1995b chia hết cho 3 và 5 với mọi a,b thuộc N
=> ĐPCM
_HT_
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n
10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
=> A chia hết cho 81
A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n
10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
=> A chia hết cho 81
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
+) Nếu n chia hết cho 3 => n1001 chia hết cho 3 => n1001 - n chia hết cho 3
+)Ta có: n1000 = (n500)2 là số chính phương nên n1000 chia cho 3 dư 1 => n1000 = 3k + 1
Nếu n chia cho dư 1 => n = 3h + 1 => n1001 = n1000.n = (3k+1)(3h +1) = 9kh + 3(k +h) + 1 => n1001 chia cho 3 dư 1
=> n1001 - n chia hết cho 3
Nếu n chia cho 3 dư 2 => n = 3h + 2 => n1001 = 9kh + 3(k +h) + 2; n = 3h + 2
=> n1001 - n chia hết cho 3
Vậy với mọi n thuộc N thì n1001 - n chia hết cho 3
bailam
=> n1001 chia hết cho 3
=> n1001 - n chia hết cho 3
=> n1000 = 3k + 1
Nếu n chia cho dư 1
=> n = 3h + 1
=> n1001 = n1000.n = (3k+1)(3h +1) = 9kh + 3(k +h) + 1
=> n1001 chia cho 3 dư 1
=> n1001 - n chia hết cho 3
Nếu n chia cho 3 dư 2 => n = 3h + 2 => n1001 = 9kh + 3(k +h) + 2; n = 3h + 2
=> n1001 - n chia hết cho 3
Vậy................
hok tốt