K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2015

+) Nếu n chia hết cho 3 => n1001 chia hết cho 3 => n1001 - n chia hết cho 3

+)Ta có: n1000 = (n500)2 là số chính phương nên n1000 chia cho 3 dư 1 => n1000 = 3k + 1

Nếu n chia cho dư 1 => n = 3h + 1 => n1001 = n1000.n = (3k+1)(3h +1) = 9kh + 3(k +h) + 1 => n1001 chia cho 3 dư 1

=> n1001 - n chia hết cho 3

Nếu n chia cho 3 dư 2 => n = 3h + 2 => n1001 = 9kh + 3(k +h) + 2; n = 3h + 2

=> n1001 - n chia hết cho 3

Vậy với mọi n thuộc N thì n1001 - n chia hết cho 3

bailam

  •  Nếu n chia hết cho 3

=> n1001 chia hết cho 3

=> n1001 - n chia hết cho 3

  • Ta có: n1000 = (n500)2 là số chính phương nên n1000 chia cho 3 dư 1

=> n1000 = 3k + 1

Nếu n chia cho dư 1

=> n = 3h + 1

=> n1001 = n1000.n = (3k+1)(3h +1) = 9kh + 3(k +h) + 1

=> n1001 chia cho 3 dư 1

=> n1001 - n chia hết cho 3

Nếu n chia cho 3 dư 2 => n = 3h + 2 => n1001 = 9kh + 3(k +h) + 2; n = 3h + 2

=> n1001 - n chia hết cho 3

Vậy................

hok tốt

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

5 tháng 8 2019

a)

Ta có: 13n+1 - 13n

= 13n . 13 - 13n

= 13n (13 - 1)

= 13n . 12 \(⋮\) 12

Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n

b)

Ta có: n3 - n = n (n2 - 1)

= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)

5 tháng 8 2019

Cảm ơn bạn nhiều <3

29 tháng 10 2023

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

29 tháng 10 2023

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

17 tháng 6 2015

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

trieu dang làm đúng rùi

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

14 tháng 6 2017

\(a,n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)

13 tháng 2 2020

1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao

14 tháng 2 2020

thế a học lớp mấy

Ta có: \(a^3-25a\)

\(=a^3-a-24a\)

\(=a\left(a^2-1\right)-24a\)

\(=\left(a-1\right)\cdot a\cdot\left(a+1\right)-24a\)

Vì a-1; a và a+1 là ba số nguyên liên tiếp nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3\)(1)

Ta có: a-1 và a là hai số nguyên liên tiếp

nên \(\left(a-1\right)\cdot a⋮2\)

\(\Leftrightarrow\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮2\)(2)

mà (2;3)=1(3)

nên từ (1), (2) và (3) suy ra \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮6\)

mà \(24a⋮6\)

nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)-24a⋮6\)

hay \(a^3-25a⋮6\)(đpcm)