K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2016

Đặt a=x+4 ta được:

(a-1)4+(a+1)4=16

<=>2a4+6a2+2=16

<=>2a4+12a2-14=0

Đặt t=a2(t\(\ge\) 0) ta được:

2t2+12t-14=0

\(\Delta=256\Rightarrow\sqrt{\Delta}=16;\Delta>0,\text{pt có 2 nghiệm phân biệt: }t_1=1\left(thỏa\right);t_2=-7\left(loại\right)\)

t=1=>a2=1 =>a=\(\pm1\)

Với a=1 =>x=-3

Với a=-1 =>x=-5

24 tháng 2 2016

Đặt a=x+4 ta được:

(a-1)4+(a+1)4=16

<=>2a4+6a2+2=16

<=>2a4+12a2-14=0

Đặt t=a2(t≥≥ 0) ta được:

2t2+12t-14=0

Δ=256⇒Δ−−√=16;Δ>0,pt có 2 nghiệm phân biệt: t1=1(thỏa);t2=−7(loại)Δ=256⇒Δ=16;Δ>0,pt có 2 nghiệm phân biệt: t1=1(thỏa);t2=−7(loại)

t=1=>a2=1 =>a=±1±1

Với a=1 =>x=-3

Với a=-1 =>x=-5

15 tháng 3 2023

15 tháng 3 2023

em cảm ơn ạ

28 tháng 8 2021

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)

\(\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

25 tháng 2 2016

Đặt x+4=ax+4=a
Ta có PT đã cho trở thành (a−1)4+(a−1)4=16(a−1)4+(a−1)4=16
⇔a4+6a2−7=0⇔a4+6a2−7=0
Giải ra tìm được (a=1)∨(a=−1)(a=1)∨(a=−1)
Từ đó suy ra (x=−3)∨(x=−5)(x=−3)∨(x=−5)

15 tháng 6 2018

\(\left(x^2+7x+12\right).\left(4x-16\right)-\left(x+3\right)\left(x^2-5x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^2+3x+4x+12\right).4.\left(x-4\right)-\left(x+3\right)\left(x^2-x-4x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow4\left(x+4\right)\left(x+3\right)\left(x-4\right)-\left(x+3\right)\left(x-4\right)\left(x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(4-x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-4\right)\left(x+3\right)\left(8-x\right)=0\)

\(\Leftrightarrow\frac{\orbr{\begin{cases}x+4=0\\x-4=0\end{cases}}}{\orbr{\begin{cases}x+3=0\\8-x=0\end{cases}}}\Leftrightarrow\frac{\orbr{\begin{cases}x=-4\\x=4\end{cases}}}{\orbr{\begin{cases}x=-3\\x=8\end{cases}}}\)

15 tháng 1 2019

đặt x + 4 = a

\(\Rightarrow\)( a - 1 )4 + ( a + 1 )4  = 16

( a4 - 4a3 + 6a2 - 4a + 1 ) + ( a4 + 4a3 + 6a2 + 4a + 1 ) = 16

2 . ( a4 + 6a2 + 1 ) = 16

a4 + 6a2 - 7 = 0

( a2 - 1 ) ( a2 + 7 ) = 0 

\(\Rightarrow\)a = \(\pm1\)

\(\Rightarrow\)\(\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)

15 tháng 1 2019

Đặt x + 4 = 3, ta có phương trình :

( y - 1 )\(^4\) + ( y + 1 )\(^4\) = 16 

\(\Leftrightarrow\) y\(^4\) - 4y\(^3\) + 6y\(^2\) - 14y + 1 + y\(^4\) + 4y\(^3\) + 6y\(^2\) + 14y + 1 = 16

\(\Leftrightarrow\) 2y\(^4\) + 12y\(^2\) + 2 = 16

\(\Leftrightarrow\) y\(^4\) + 6 y\(^2\) + 1 = 8

\(\Leftrightarrow\) y\(^4\) + 6y\(^2\) - 7 = 0 ( chuyễn vế đổi dấu và rút gọn, mình làm tắt xíu )

\(\Leftrightarrow\) ( y\(^2\) - 1 ) ( y\(^2\) + 7 ) = 0 ( Phân tích đa thức thành nhân tử )

.......

Bạn làm phần còn lại nha. Tích A ( x ) . B ( x ) = 0 ( sẽ có một cái vô lý nha y^2 + 7 luôn dương nên ko thể bằng 0 )

Chúc bạn học tốt !!!

9 tháng 5 2016

Đặt t=\(x+\frac{5+3}{2}=x+4\)

PT trên trở thành:

(t+1)4+(t-1)4=16

<=>2t4+12t2+2=16

<=>2t4+12t2-14=0(1)

Đặt y=t2(y\(\ge\) 0)=> PT(1) trở thành: 2y2+12y-14=0(2)

Ta có: a+b+c=2+12-14=0

=>PT(2) có 2 nghiệm phân biệt: \(y_1=1\left(nhận\right);y_2=-7\left(loại\right)\)

y=1 =>t2=1 =>t=1 hoặc t=-1

Với t=1 =>x=-3 

Với t=-1 =>x=-5

Vậy S={-3;-5}

9 tháng 5 2016

Đặt \(t=x+4\), phương trình ban đầu trở thành :

\(\left(t+1\right)^4+\left(t-1\right)^4=16\Leftrightarrow t^4+6t^2-7=0\)

                                     \(\Leftrightarrow\left[\begin{array}{nghiempt}t^2=1\\t^2=-7\end{array}\right.\)

Phương trình \(t^2=-7\) vô nghiệm

Phương trình \(t^2=1\) cho ta 2 nghiệm \(t=1;t=-1\) do đó :

Phương trình ban đầu \(\Leftrightarrow\left[\begin{array}{nghiempt}x+4=-1\\x+4=1\end{array}\right.\)

                                 \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-3\end{array}\right.\)

24 tháng 2 2016

Nghiệm lẽ hoặc vô nghiệm xem lại đề

 

19 tháng 2 2020

x4-16+x4+625=16

x4+x4+625-16=16

x4+x4+609=16

x4+x4=16-609

x4+x4=-593

Xem lại đề đi,sai đề bài rồi