help me: \(\left(6.\left(-\frac{1}{3}\right)^2-3.\left(-\frac{1}{3}\right)+1\right):\left(-\frac{1}{3}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left[\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2\right]:\left[2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}\right)-\frac{27}{64}.4\right]:\left[2.\left(-1\right)+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}-\frac{27}{16}\right)\right]:\left[-2+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\frac{-2-27}{16}:\frac{-32+9-6}{16}\)
\(=-\frac{29}{16}:\frac{-29}{16}=1\)
\(b,\left[\left(\frac{4}{3}\right)^{-2}\left(\frac{3}{2}\right)^4\right]:\left(\frac{3}{2}\right)^6\)
\(=\left(\frac{9}{16}.\frac{81}{16}\right):\frac{729}{64}\)
\(=\frac{729}{64}:\frac{729}{64}=1\)
a)\(\left[6.\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(=\frac{\left[6\left(-\frac{1}{3}\right)^2+3\left(-\frac{1}{3}\right)+1\right]}{-\frac{1}{3}}-\frac{\left[6\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\right]}{-1}\)
\(=\frac{6\left(-\frac{1}{3}\right)^2}{-\frac{1}{3}}+\frac{3\left(-\frac{1}{3}\right)}{-\frac{1}{3}}-\frac{1}{\frac{1}{3}}+6\left(-\frac{1}{3}\right)^2-3\left(-\frac{1}{3}\right)+1\)
\(=6\left(-\frac{1}{3}\right)+3-3+\frac{6.1}{9}+\frac{3}{3}+1\)
\(=-2+3-3+\frac{2}{3}+1+1=\frac{2}{3}\)
\(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)}\)
\(=\frac{\left(x+\frac{1}{x}\right)^6-\left[\left(x^3\right)^2+2x^3\cdot\frac{1}{x^3}+\left(\frac{1}{x^3}\right)^2\right]}{\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)}\)
\(=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)}\)
\(=\frac{\left[\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\right]\left[\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)\right]}{\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)}\)
\(=\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)\ge\left(2\sqrt{x\cdot\frac{1}{x}}\right)^3+2\sqrt{x^3\cdot\frac{1}{x^3}}=8+2=10\)
Dấu "=" khi x = 1
\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)
\(\Leftrightarrow x^3-9x^2+27x-27-2x+2=x^3-4x^2+4x-5x^2\)
\(\Leftrightarrow27x-2x-4x-27+2=0\)
\(\Leftrightarrow21x=25\)
\(\Leftrightarrow x=\frac{25}{21}\)
Hết ý tưởng,phá tung ra,sai chỗ nào tự sửa nhé !
\(\frac{\left(x+1\right)^2}{3}+\frac{\left(x+2\right)\left(x-3\right)}{2}=\frac{\left(5x-1\right)\left(x-4\right)}{6}+\frac{28}{3}\)
\(\Leftrightarrow\frac{2\left(x+1\right)^2+3\left(x+2\right)\left(x-3\right)-\left(5x-1\right)\left(x-4\right)}{6}=\frac{28}{3}\)
\(\Leftrightarrow\frac{2x^2+4x+2+3x^2-3x-18-5x^2-21x+4}{6}=\frac{28}{3}\)
\(\Leftrightarrow\frac{\left(4x-3x-21x\right)+\left(2-18+4\right)}{6}=\frac{56}{6}\)
\(\Leftrightarrow-20x-12=56\)
\(\Leftrightarrow-20x=68\)
\(\Leftrightarrow x=-\frac{17}{5}\)
Tự check lại nhá
#)Giải :
a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)
b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
\(=\frac{\left(-2\right)\left(-3\right)...\left(-2010\right)\left(-2011\right)}{\left(-2\right)\left(-3\right)...\left(-2010\right)}=-2011\)
\(\left[6.\left(-\frac{1}{3}\right)^2-3.\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\left(-\frac{4}{3}\right)\)
\(=\left[\frac{2}{3}+1+1\right]:\left(-\frac{4}{3}\right)\)
\(=\frac{8}{3}.\frac{-3}{4}\)
\(=-2\)
help me T×m mét sè cã ba ch÷ sè, biÕt r»ng sè ®ã chia hÕt cho 18 vµ c¸c ch÷ sè cña nã tØ lÖ víi ba sè 1, 2 vµ 3.