Nếu một phân số tối giản a/b có 0 < a < b thì phân số bù với nó để thành 1 có tối giản không ?
Giúp mình nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
Đặt \(A=\frac{a}{a+b}\)
Ta có: \(\frac{1}{A}=\frac{a+b}{a}=1+\frac{b}{a}\)
Vì \(\frac{a}{b}\)là phân số tối giản nên \(\frac{b}{a}\)cũng là phân số tối giản
\(\Rightarrow\)\(\frac{1}{A}\)là phân số tối giản
\(\Rightarrow\)\(\frac{a}{a+b}\)là phân số tối giản
chtt