So sánh A với 2, biết A:
1/5+1/6+1/7+...+1/18+1/19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{19^{18}+1}{19^{19}+1}< \frac{19^{18}+1+18}{19^{19}+1+18}=\frac{19^{18}+19}{19^{19}+19}=\frac{19\left(19^{17}+1\right)}{19\left(19^{18}+1\right)}=\frac{19^{17}+1}{19^{18}+1}=B\)
\(\Rightarrow\)\(A< B\) ( đpcm )
Vậy \(A< B\)
Chúc bạn học tốt ~
A=1/10+1/11+...+1/18+1/19
Số phân số A có là:(19-10):1+1=109(p/s)
Ta có: 1/10>1/20,1/11>1/20,....,1/19>1/20
Suy ra: 1/10+1/11+...+1/18+1/19 > 1/20+1/20+....+1/20
A >10/20
Suy ra A > 1/2
Vậy A > 1/2
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
a) Ta có:
\(A=-3\cdot7\cdot\left(-2\right)\cdot\left(-13\right)\)
\(A=-21\cdot26\)
\(A=-546\)
\(B=-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot\left(-4\right)\cdot5\)
\(B=2\cdot12\cdot5\)
\(B=2\cdot60\)
\(B=120\)
Mà: \(120>-546\)
\(\Rightarrow B>A\)