\(\text{So sánh: A=\frac{1}{2\cdot3}+\frac{1}{4\cdot5}+\frac{1}{6\cdot7}+\frac{1}{8\cdot9}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

Ta có

 \(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)

\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)

\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)

\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)

Lại có  \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)

Từ (1),(2) => B>A

6 tháng 7 2019

a)\(\frac{1}{2}-2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\right)\)

=\(\frac{1}{2}-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{48.50}\right)\)

=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\right)\)

=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{50}\right)\)

=\(\frac{1}{50}\)

6 tháng 7 2019

\(1)a)\frac{1}{2}-2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{24.25}\right)\)

\(=\frac{1}{2}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{24}-\frac{1}{25}\right)\)

\(=\frac{1}{2}-\left(1-\frac{1}{25}\right)\)

\(=\frac{1}{2}-\frac{24}{25}=\frac{-23}{50}\)

\(\)

2 tháng 7 2019

a, \(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)

\(=\frac{-5}{9}.\left(\frac{3}{10}-\frac{4}{10}\right)\)

\(=\frac{-5}{9}.\frac{-1}{10}\)

\(=\frac{5}{90}\)

\(=\frac{1}{18}\)

b,\(\frac{2}{3}+\frac{-1}{3}+\frac{7}{15}\)

\(=\frac{10}{15}-\frac{5}{15}+\frac{7}{15}\)

\(=\frac{12}{15}\)

\(=\frac{4}{5}\)

c, \(\frac{3}{8}.3\frac{1}{3}\)

\(=\frac{3}{8}.\frac{10}{3}\)

\(=\frac{10}{8}\)

\(=\frac{5}{4}\)

d, \(\frac{-3}{5}+0,8.\left(-7\frac{1}{2}\right)\)

\(=\frac{-3}{5}+\frac{4}{5}.\frac{-15}{2}\)

\(=\frac{-3}{5}+\frac{-60}{10}\)

\(=\frac{-3}{5}+\frac{-30}{5}\)

\(=\frac{-33}{5}\)

e, \(\frac{2}{5}.8\frac{1}{3}+1\frac{2}{3}.\frac{2}{5}\)

\(=\frac{2}{5}.\left(8\frac{1}{3}+1\frac{2}{3}\right)\)

\(=\frac{2}{5}.10\)

\(=4\)

f, \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)

\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)

\(=\frac{3}{7}.-14\)

\(=-6\)

~Study well~

#KSJ

5 tháng 10 2019

\(A=\frac{8\frac{3}{9}.5\frac{1}{4}+3\frac{16}{19}.5\frac{1}{4}}{\left(2\frac{14}{17}-2\frac{1}{34}\right).34}:\frac{7}{24}\)

\(=\frac{5\frac{1}{4}\left(8\frac{1}{3}+3\frac{16}{19}\right)}{\left(\frac{28}{34}-\frac{1}{34}\right).34}:\frac{7}{24}\)

\(=\frac{\frac{21}{4}\left(\frac{25}{3}+\frac{73}{19}\right)}{\frac{27}{34}.34}:\frac{7}{24}\)

\(=\frac{\frac{21}{4}\left(\frac{475}{57}+\frac{219}{57}\right)}{27}:\frac{7}{24}\)

\(=\frac{\frac{21}{4}.\frac{674}{57}}{27}:\frac{7}{24}\)

\(=\frac{\frac{14154}{228}}{27}.\frac{24}{7}=\frac{\frac{339696}{228}}{189}\)

5 tháng 10 2019

Ban sai r Famas a

475+219=694 chu

1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4