K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

H
hoanpt
Giáo viên
20 tháng 12 2015

(P) cắt Oy tại điểm (0,3)

=> a.02 + b.0 + c = 3 => c = 3

Đỉnh của parabol là: [-b/(2a_ , -(b2 - 4ac)/(4a)]

(P) có đỉnh (2, -1) => [-b/(2a_ , -(b2 - 4ac)/(4a)] = (2, -1)

=> -b / (2a) = 2                    (1)

     -(b2 - 4ac)/(4a) = 1           (2)

(1) => b = -4a thay vào (2) (chú ý c = 3)

-(16a2 -12a)/(4a) = 1

4a - 3 = -1

a = 1/2

=> b = -2

Vậy a= 1/2; b = -2; c = 3

21 tháng 2 2017

@Bình Thị Trần

(P) cắt Oy tại điểm (0,3)

=> a.02 + b.0 + c = 3 => c = 3

Đỉnh của parabol là: [-b/(2a_ , -(b2 - 4ac)/(4a)]

(P) có đỉnh (2, -1) => [-b/(2a_ , -(b2 - 4ac)/(4a)] = (2, -1)

=> -b / (2a) = 2 (1)

-(b2 - 4ac)/(4a) = 1 (2)

(1) => b = -4a thay vào (2) (chú ý c = 3)

-(16a2 -12a)/(4a) = 1

4a - 3 = -1

a = 1/2

=> b = -2

Vậy a= 1/2; b = -2; c = 3

Sửa đề: cắt trục tung tại điểm có tung độ bằng -3

Thay x=0 và y=-3 vào (P), ta được:

\(a\cdot0^2+b\cdot0+c=-3\)

=>0+0+c=-3

=>c=-3

vậy: (P): \(y=ax^2+bx-3\)

Tọa độ đỉnh là I(-1;-4) nên ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-1\\-\dfrac{b^2-4\cdot a\cdot\left(-3\right)}{4a}=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\dfrac{b^2+12a}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\\left(2a\right)^2+12a=16a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\4a^2-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\4a\left(a-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\left[{}\begin{matrix}a=0\left(loại\right)\\a-1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

26 tháng 11 2021

THam khảo

Bài 2: 

Ta có: −Δ4a=−3−Δ4a=−3

⇔−Δ=−12a⇔−Δ=−12a

⇔b2−4a=12a⇔b2−4a=12a

⇔b2−16a=0(1)⇔b2−16a=0(1)

Thay x=-1 và y=6 vào (P), ta được:

a⋅(−1)2+b(−1)+1=6a⋅(−1)2+b(−1)+1=6

⇔a−b=5⇔a−b=5

⇔a=b+5⇔a=b+5(2)

Thay (2) vào (1), ta được:

b2−16(b+5)=0b2−16(b+5)=0

⇔b2−16b+64−144=0⇔b2−16b+64−144=0

⇔(b−8)2=144⇔(b−8)2=144

⇔[b=20b=−4⇔[a=25a=1

26 tháng 11 2021

giúp mình câu mới nhất ạ

26 tháng 10 2021

Vì parabol đi qua \(I\left(-2;1\right)\) nên \(\left\{{}\begin{matrix}\dfrac{b}{2a}=2\\-\dfrac{\Delta}{4a}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-b=0\\b^2-4ac-4a=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=4a\\16a^2-4ac-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4a-c=1\left(a\ne0\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4a=1+c\end{matrix}\right.\)

Mà parabol cắt \(y=x-1\) tại 1 điểm trên trục tung nên \(x=0\Leftrightarrow y=1\)

\(\Leftrightarrow c=1\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\)

Vậy parabol là \(y=\dfrac{1}{2}x^2+2x+1\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

Theo bài ra thì tọa độ đỉnh của parabol là $(-2,19)$

Từ hàm $y=ax^2+bx+3=a(x+\frac{b}{2a})^2+3-\frac{b^2}{4a}$ ta có tọa độ đỉnh của parabol là:
$(\frac{-b}{2a}, 3-\frac{b^2}{4a})$

$\Rightarrow \frac{-b}{2a}=-2; 3-\frac{b^2}{4a}=19$

$\Rightarrow a=-4; b=-16$

a) Thay x=1 và y=-2 vào (P), ta được:

\(a\cdot1^2-4\cdot1+c=-2\)

\(\Leftrightarrow a-4+c=-2\)

hay a+c=-2+4=2

Thay x=2 và y=3 vào (P), ta được:

\(a\cdot2^2-4\cdot2+c=3\)

\(\Leftrightarrow4a-8+c=3\)

hay 4a+c=11

Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)

Vậy: (P): \(y=3x^2-4x-1\)

27 tháng 10 2018

Câu 1: (P) : \(y=ax^2+bx+c\)

Vì (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là -1 và 2

nên (P) cắt hai điểm A(-1;0) và B (2;0)

A (-1;0) ∈ (P) ⇔ 0 = a - b+c (1)

B (2;0) ∈ (P) ⇔ 0 = 4a+2b+c (2)

Mà (P) cắt trục Oy tại điểm có tung độ bằng -2

nên (P) cắt C ( 0;-2)

C (0;-2) ∈ (P) ⇔ -2 = c (3)

Từ (1) ,(2) và (3) ⇔ \(\left\{{}\begin{matrix}a-b+c=0\\4a+2b+c=0\\c=-2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a-b=2\\4a+2b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)

Vậy (P) : \(y=x^2-x-2\)

Câu 2: (P) : \(y=ax^2+bx+c\)

Vì (P) có đỉnh I ( -2;-1)

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-2\\-1=4a-2b+c\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\end{matrix}\right.\)(1)

Mà (P) cắt trục tung tại điểm có tung độ bằng -3

nên (P) cắt A( 0;-3)

A(0;-3) ∈ (P) ⇔ -3 = c (2)

Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\\c=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-4a+b=0\\4a-2b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=-2\end{matrix}\right.\)

Vậy (P) : \(y=\dfrac{-1}{2}x^2-2x-3\)

7 tháng 11 2021

Đây mà lớp 1 á bạn???haha

7 tháng 11 2021

tạo câu hỏi nhầm khối lớp rồi bạn=))