K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2015

Điều kiện: cosx \(\ne\) 0; sin x \(\ne\) 0

pt <=> \(\frac{5}{tanx}-2tanx-3=0\Leftrightarrow5-2tan^2x-3tanx=0\Leftrightarrow\left(tanx-1\right)\left(-2tanx-5\right)=0\)

<=> tanx = 1 (Thoản mãn ) hoặc tan x= \(\frac{-5}{2}\) (Thỏa mãn)

+) tanx = 1 <=> x = \(\frac{\pi}{4}+k\pi\)

+) tan x = \(\frac{-5}{2}\) <=> x = arctan \(\frac{-5}{2}\) + \(k\pi\)

Vậy pt đã cho có nghiệm là: x = \(\frac{\pi}{4}+k\pi\) x = arctan \(\frac{-5}{2}\) + \(k\pi\)

  

 

20 tháng 9 2018

2tanx(1-cosx)+3 cotx(1-sinx)+5=0

=> 2tan2x(1-cosx) +3 (1-sinx)+5tanx=0

<=> 2tan2x -2tanx.sinx+3 -3 sinx+5tanx=0

<=> 2tanx(tanx -sinx+1)+3(tanx-sinx+)=o

<=> (tanx -sinx+1)(2tanx+3)=0

2tanx=3=> x=...

tanx-sinx+1=0 <=> sinx+cosx -sinxcosx=0

bạn đặt t rồi giải pt này với tìm điều kiện của pt nữa

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

a.

$(2\cos x+\sqrt{2})(\cos x-2)=0$

\(\Rightarrow \left[\begin{matrix} 2\cos x+\sqrt{2}=0\\ \cos x-2=0\end{matrix}\right.\)

Nếu $2\cos x+\sqrt{2}=0\Rightarrow \cos x=\frac{-\sqrt{2}}{2}\Rightarrow x=\pm \frac{3\pi}{4}+2k\pi$ với $k$ nguyên

Nếu $\cos x-2=0\Leftrightarrow \cos x=2$ (vô lý vì $\cos x\leq 1$)

b.

PT \(\Rightarrow \left[\begin{matrix} \tan x=\sqrt{3}\\ \tan x=1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{\pi}{3}+k\pi\\ x=\frac{\pi}{4}+k\pi\end{matrix}\right.\) với $k$ nguyên

c.

PT \(\Rightarrow \left[\begin{matrix} \cot \frac{x}{3}=1\\ \cot \frac{x}{2}=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{3}{4}\pi +3k\pi\\ x=\frac{-\pi}{2}+2k\pi \end{matrix}\right.\) với $k$ nguyên.

NV
12 tháng 8 2020

a/

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+\sqrt{2}=0\\cosx-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{\sqrt{2}}{2}\\cosx=2>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{3\pi}{4}+k2\pi\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\left[{}\begin{matrix}tanx-\sqrt{3}=0\\1-tanx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

c/ĐKXĐ: ...

\(\Leftrightarrow\left[{}\begin{matrix}cot\frac{x}{3}=1\\cot\frac{x}{2}=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}=\frac{\pi}{4}+k\pi\\\frac{x}{2}=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+k3\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi  - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)

b) \(2\cos x =  - \sqrt 2 \;\; \Leftrightarrow \cos x =  - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x =  - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)

c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)

\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác