K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

???????

4 tháng 4 2017

ko hiểu

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

13 tháng 3 2020

Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0

a) Xác định m để phương trình có một nghiệm x = 1.

b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.

7 tháng 4 2020

Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :

 \(x^3+mx^2-4x-4=0\)(1)

a) Thay \(x=1\), phương trình (1) trở thành :

\(1^3+m.1^2-4.1-4=0\)

\(\Leftrightarrow1+m-4-4=0\)

\(\Leftrightarrow m-7=0\)

\(\Leftrightarrow m=7\)

Vậy  \(x=1\Leftrightarrow m=7\)

b) Thay  \(m=7\), phương trình (1) trở thành :

\(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)

13 tháng 3 2020

bn ơi mik có thấy tham số m nào đâu ?

13 tháng 3 2020

chuyển M thành A

6 tháng 2 2022

a) thay m=5 vào pt (1) dc

\(\left(5-4\right)x^2-2.5x+5-2=0\)

<=>\(x^2-10x+3=0\)

<=>\(\left(x-5-\sqrt{22}\right)\left(x-5+\sqrt{22}\right)=0\)

<=>\(\left[{}\begin{matrix}x=5+\sqrt{22}\\x=5-\sqrt{22}\end{matrix}\right.\)

b)Thay x=-1 vào pt (1) dc

\(\left(m-4\right)\left(-1\right)^2-2m\left(-1\right)+m-2=0\)

<=>\(m-4+2m+m-2=0\)

<=>\(4m=6\)

<=>m=\(\dfrac{3}{2}\)

Pt có nghiệm nên

Áp dụng hệ thức Vi-ét ta có

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-4}\left(2\right)\\x_1.x_2=\dfrac{m-2}{m-4}\left(3\right)\end{matrix}\right.\)

Thay m=\(\dfrac{3}{2}\)và x=-1 vào pt (2) ta dc

\(-1+x=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-4}=-\dfrac{6}{5}\)

=>x=\(-\dfrac{1}{5}\)

c)\(\Delta'=\left[-\left(m\right)\right]^2-\left(m-4\right)\left(m-2\right)=m^2-\left(m^2-6m+8\right)=6m-8\)

pt có nghiệm kép <=>\(\Delta'=0\)

                             <=>\(6m-8=0< =>m=\dfrac{4}{3}\)

 

Bài 2: 

a: \(x^2-4x+3=0\)

=>x=1 hoặc x=3

\(x_1^2+x_2^2=1^2+3^2=10\)

b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)

c: \(x_1^3+x_2^3=1^3+3^3=28\)

d: \(x_1-x_2=1-3=-2\)

3 tháng 5 2023

a, Th1 : \(m-1=0\Rightarrow m=1\)

\(\Rightarrow-x+3=0\\ \Rightarrow x=3\)

Th2 : \(m\ne1\)

\(\Delta=\left(-1\right)^2-4.\left(m-1\right).3\\ =1-12m+12\\=13-12m \)

phương trình có nghiệm \(\Delta\ge0\)

\(\Rightarrow13-12m\ge0\\ \Rightarrow m\le\dfrac{13}{12}\)

b, Áp dụng hệ thức vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1}{m-1}\\x_1x_1=\dfrac{3}{m-1}\end{matrix}\right.\)

Tổng bình phương hai nghiệm bằng 12 \(\Rightarrow x^2_1+x^2_2=12\)

\(\left(x_1+x_2\right)^2-2x_1x_2=12\\ \Leftrightarrow\left(\dfrac{1}{m-1}\right)^2-2.\left(\dfrac{3}{m-1}\right)=12\\ \Leftrightarrow\dfrac{1}{\left(m-1\right)^2}-\dfrac{6}{m-1}=12\\ \Leftrightarrow1-6\left(m-1\right)=12\left(m-1\right)^2\\ \Leftrightarrow1-6m+6=12\left(m^2-2m+1\right)\\ \Leftrightarrow7-6m-12m^2+24m-12=0\\ \Leftrightarrow-12m^2+18m-5=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{9-\sqrt{21}}{12}\\m=\dfrac{9+\sqrt{21}}{12}\end{matrix}\right.\Rightarrow m=\dfrac{9+\sqrt{21}}{12}\)