K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  loading...  

a: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

=>OB=OD

Ta có: OM=1/2OD

ON=1/2OB

mà OD=OB

nên OM=ON

=>O là trung điểm của MN

Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

Do đó: AMCN là hình bình hành

b: AMCN là hình bình hành

=>AM=CN và AM//CN và AN//CM và AN=CM

AM//CN

mà E thuộc tia đối của tia MA và F thuộc tia đối của tia NC

nên AE//CF

Xét tứ giác AECF có

AE//CF

AF//CE

Do đó: AECF là hình bình hành

=>AF=CE

AF+FB=AB

CE+ED=CD

mà AF=CE và AB=CD

nên DE=BF

a:

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

OM=OD/2

ON=OB/2

mà OD=OB

nên OM=ON

=>O là trung điểm của MN

Xét tứ giác AMCN có

O là trung điểm chung của AC và MN

=>AMCN là hbh

b: Xét tứ giác AFCE có

AF//CE

AE//CF
=>AFCE là hbh

=>AF=CE

AF+FB=AB

CE+ED=CD

mà AF=CE và AB=CD

nên FB=ED

24 tháng 10 2017

mk ko bt 123

26 tháng 10 2017

Mình làm đấy bạn dựa theo nhé

26 tháng 10 2017
Mn ơi ai giúp mk đi mk đg gấp lắm cầu xin đó 🙏🙏🙏hu hu hu hu
2 tháng 11 2015

a)Ta có O giao điểm AC và BD trong hình bình hành ABCD (gt)

=> O là trung điểm AC và BD.

=> OD=OB

Mà OM=MD=\(\frac{1}{2}\)OD; ON=BN=\(\frac{1}{2}\)OB => OM=ON=OD=OB.

Xét hình bình hành ABCD có O trung điểm AC (hbh ABCD) và O trung điểm MN (OM=ON)

=> đpcm (điều phải chứng minh)

b) C/m tam giác ACE=ACF (cgc)(AC chung; \(\angle EAC=\angle FCA\) do song song; và cũng như vây với \(\angle ECA=\angle CAF\))

=>AE=FC mà \(AE \parallel FC\) do ăn theo hbh AMCN => đpcm