tính :
1+2+3+4+5+6+....+100000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khoảng cách giữa các số là 1
Số số hạng là :
( 100 000 - 1 ) : 1 + 1 = 100 000 ( số )
Tổng trên bằng :
( 100 000 + 1 ) x 100 000 : 2 = 50005000
Đáp số : 5000 5000
À bấm thừa 1 số 0
Số các số hạng là:
(100000-1):1+1=100000 (số)
Tổng trên là:
(1+100000).100000:2=5000050000
số các số của dãy là:(100000-1):1+1
tổng là:(100000+1)x(số các số của dãy:2)=
1+2+3+4+...+100001
ta có Số số hạng trong dãy trên là
(100001-1):1+1=100001(số hạng)
Tổng dãy số trên là:
(100001+1)x100001:2=5000150001
đúng đấy k mk nha
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
Bài này dễ thôi !!!
\(\left(1+100000\right)\times100000\div2=5000050000\)
Cho xin cái li ke
Số số hạng của dãy : (999999 - 1) :1 +1 = 999999 (số)
Tổng : (1 + 999999) x 999999 : 2 = 499.999.500.000
1+2+3+4+...+100000
= ( 1 + 100000) x ( 100000 : 2 )
= 100001 x 50000
= 5000050000
Số số hạng của dãy là : (100000 - 1) : 1 + 1 = 100000
Tổng của dãy là : (100000 + 1) x 100000 : 2 = 5000050000
_Chúc bạn học tốt_
\(1^{2^{3^{4^{5^{6^{7^{8^{9^{10}}}}}}}}}=1;100..0=10^{150}\)
\(\Rightarrow100..0^{1^{2^{3^{4^{5^{6^{7^{8^{9^{10}}}}}}}}}}=\left(10^{150}\right)^1=10^{150}\)
5000050000