cho hệ bất phương trình \(\hept{\begin{cases}x+m\le0\left(1\right)\\-x+5< 0\left(2\right)\end{cases}}\)hệ đã cho có nghiệm khi và chỉ khi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lười làm lắm cứ xét từng khoản là được
Đầu tiên giải bất thứ nhất
Ở bất thứ 2 xét 2 trường hợp
- TH 1: \(m\le0\)
- TH2: \(m>0\)
+ \(\hept{\begin{cases}m-x^2>0\\x+m< 0\end{cases}}\)
+\(\hept{\begin{cases}m-x^2< 0\\x+m>0\end{cases}}\)
a) Với m = 0 thì ta có hệ:
\(\hept{\begin{cases}x-y=1\\x-y=2\end{cases}}\)
Ta thấy ngay phương trình vô nghiệm.
b) \(\hept{\begin{cases}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\\left(m+1\right)x+\left(m^2-1\right)y=2\left(m+1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\m^2y=m+1\end{cases}}\)
Với m = 0 : phương trình vô nghiệm.
Với \(m\ne0\), ta có : \(\hept{\begin{cases}\left(m+1\right)x-\frac{m+1}{m^2}=m+1\\y=\frac{m+1}{m^2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{m^2+1}{m^2}\\y=\frac{m+1}{m^2}\end{cases}}\)
Vậy thì \(S=x+y=\frac{m^2+m+2}{m^2}=1+\frac{1}{m}+\frac{2}{m^2}\)
Đặt \(\frac{1}{m}=t\Rightarrow S=2t^2+t+1=2\left(t^2+\frac{1}{2}t+\frac{1}{16}\right)+\frac{7}{8}\)
\(=2\left(t+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
Vây minS = \(\frac{7}{8}\) khi m = -4.
Xét hệ: \(\hept{\begin{cases}mx+y=5\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}3mx+3y=15\\2mx+3y=6\end{cases}}\) <=> \(\hept{\begin{cases}mx+y=5\\mx=9\left(\cdot\right)\end{cases}}\)
Hệ pt đã cho có nghiệm duy nhất <=> \(\left(\cdot\right)\)có nghiệm duy nhất m \(\ne\)0
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{9}{m}\\y=-4\end{cases}}\)
Ta có: (2m - 1)x + (m + 1)y = m
Hay (2m - 1).\(\frac{9}{m}\) + -4(m + 1) = m
<=> \(\frac{18m-9}{m}-4m-4-m=0\)
<=> \(\frac{18m-9-4m^2-4m-m^2}{m}=0\)
=> -5m2 + 14m - 9 = 0
<=> 5m2 - 14m + 9 = 0
<=>5m2 - 5m - 9m + 9 = 0
<=> 5m(m - 1) - 9(m - 1) = 0
<=> (5m - 9)(m - 1) = 0 <=> \(\orbr{\begin{cases}m=\frac{9}{5}\\m=1\end{cases}\left(TM\right)}\)
Vậy với m = 9/5 hoặc m = 1 thì thỏa mãn đề bài
\(\hept{\begin{cases}x+m\le0\\-x+5< 0\end{cases}\hept{\begin{cases}x\le-m\\x< -5\end{cases}\hept{\begin{cases}x\in\left(-\infty;-m\right)\\x\in\left(-\infty;-5\right)\end{cases}}}}\)bạn sửa lại chỗ trên nha là nửa khoảng
\(+-m\ge-5\)
\(m\le5< =>\)tập nghiệm của HPT \(S=\left(-m;-\infty\right)\)
\(+-m< 5\)
\(m>5< =>\)tập nghiệm của HPT \(S=\left\{-\infty;-5\right\}\)