Cho x>0, y>0 chứng minh rằng 1/x + 1/y \(\ge\) 4/(x+y) với mọi x,y.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = (x + 1)(y + 1)
=> A = xy + x + y +1
=> A = 1 + x + y + 1
=> A = 2 + x + y
Vì x > 0 ; y > 0
=>x \(\ge\)1; y\(\ge\)1
=> x + y \(\ge\)2
=> 2 + x + y \(\ge\)4
hay A \(\ge\)4
Bạn kia sai rồi
x > 0 ; y > 0 thì chưa chắc \(x\ge1;y\ge1\) được
Mình giải các bạn tham khảo nhé :
\(A=\left(x+1\right)\left(y+1\right)=x\left(y+1\right)+\left(y+1\right)=xy+x+y+1\)
\(=1+x+y+1=2+x+y\)
Ta lại có : \(x+y\ge2\sqrt{xy}=2.1=2\) ( bất đẳng thức cosi )
Dấu "=" xảy ra <=> \(x=y\)
\(\Rightarrow2+x+y\ge2+2=4\)
\(\Rightarrow A\ge4\) (Đpcm)
a: Thiếu vế phải rồi bạn
b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
PP : biến đổi tương đương
Bài làm
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+x\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{\left(x+y\right)xy}\)
Vì x , y >0 , ta suy ra (x+y)2 \(\ge\)4xy
\(\Leftrightarrow\left(x+y\right)^2-4xy\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
Hay (x-y)2 \(\ge\)0 ( điều này luôn đúng )
Vậy..........
\(VT=\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)
\(\ge\dfrac{4}{x^2+2xy+y^2}\)
\(=\dfrac{4}{\left(x+y\right)^2}>4\)
Cách khác.
Ta có: \(A=\dfrac{1}{x\left(x+y\right)}+\dfrac{1}{y\left(x+y\right)}=\dfrac{1}{x+y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(=\dfrac{1}{x+y}.\dfrac{x+y}{xy}=\dfrac{1}{xy}\)
Áp dụng BĐT cho các số x,y >0 , ta có:
\(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\)
Và x+y \(\le\)1 \(\Rightarrow xy\le\dfrac{1}{4}\) \(\Rightarrow A\ge\dfrac{1}{\dfrac{1}{4}}=4\)
Dấu ''='' xảy ra khi x = y =0,5
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)
\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Áp dụng bất đẳng thức Mincopski
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
Chứng minh rằng \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)
\(\Leftrightarrow x+y+z+\dfrac{9}{x+y+z}\ge6\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z+\dfrac{9}{x+y+z}\ge2\sqrt{\dfrac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\) ( đpcm )
Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)
Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\) ( đpcm )
Dấu " = " xảy ra khi \(x=y=z=1\)
\(\text{Xét hiệu:}\)
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)
\(=\frac{y^2+xy}{x^2y+xy^2}+\frac{x^2+xy}{x^2y+xy^2}-\frac{4xy}{x^2y+xy^2}\)
\(=\frac{x^2-2xy+y^2}{x^2y+xy^2}=\frac{\left(x-y\right)^2}{x^2y+xy^2}\)
\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y và }x>0;y>0\)
\(\text{nên: }\frac{\left(x-y\right)^2}{x^2y+xy^2}\ge0\text{ với mọi x;y hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)
\(\text{Xét hiệu:}\)
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)
\(=\frac{xy+y^2}{xy.\left(x+y\right)}+\frac{x^2+xy}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}=\frac{x^2-2xy+y^2}{xy.\left(x+y\right)}=\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\)
\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y };x>0;y>0\)
\(\text{Nên }\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\ge0\text{ với mọi x;y}\)
\(\text{hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y }\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)
\(\text{Dấu "=" xảy ra khi x=y}\)