K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

\(\text{Xét hiệu:}\)

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)

\(=\frac{y^2+xy}{x^2y+xy^2}+\frac{x^2+xy}{x^2y+xy^2}-\frac{4xy}{x^2y+xy^2}\)

\(=\frac{x^2-2xy+y^2}{x^2y+xy^2}=\frac{\left(x-y\right)^2}{x^2y+xy^2}\)

\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y và }x>0;y>0\)

\(\text{nên: }\frac{\left(x-y\right)^2}{x^2y+xy^2}\ge0\text{ với mọi x;y hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)

29 tháng 8 2015

\(\text{Xét hiệu:}\)

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{y.\left(x+y\right)}{xy.\left(x+y\right)}+\frac{x.\left(x+y\right)}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}\)

\(=\frac{xy+y^2}{xy.\left(x+y\right)}+\frac{x^2+xy}{xy.\left(x+y\right)}-\frac{4xy}{xy.\left(x+y\right)}=\frac{x^2-2xy+y^2}{xy.\left(x+y\right)}=\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\)

\(\text{Vì }\left(x-y\right)^2\ge0\text{ với mọi x;y };x>0;y>0\)

\(\text{Nên }\frac{\left(x-y\right)^2}{xy.\left(x+y\right)}\ge0\text{ với mọi x;y}\)

\(\text{hay }\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}\ge0\text{ với mọi x;y }\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\text{ với mọi x;y}\)

\(\text{Dấu "=" xảy ra khi x=y}\)

25 tháng 7 2018

\(VT=\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}\)

\(=\dfrac{4}{\left(x+y\right)^2}>4\)

25 tháng 7 2018

Cách khác.

Ta có: \(A=\dfrac{1}{x\left(x+y\right)}+\dfrac{1}{y\left(x+y\right)}=\dfrac{1}{x+y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(=\dfrac{1}{x+y}.\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

Áp dụng BĐT cho các số x,y >0 , ta có:

\(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\)

Và x+y \(\le\)1 \(\Rightarrow xy\le\dfrac{1}{4}\) \(\Rightarrow A\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Dấu ''='' xảy ra khi x = y =0,5

8 tháng 11 2019

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)

\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

3 tháng 2 2020

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng : \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z+\frac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z+\frac{9}{x+y+z}\ge2\sqrt{\frac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\left(đpcm\right)\)

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

Mà \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

3 tháng 2 2020

Chị xem cách giải của em tại:

Câu hỏi của Nhã Doanh - Toán lớp 9 | Học trực tuyến

(https://h o c 2 4 .vn/hoi-dap/question/680384.html). Do không biết ad đã fix lỗi không gửi được link \(\text{H}\)(h.vn) nên em phải đính kèm link-_-

21 tháng 4 2017

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

Chứng minh rằng \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)^2+9\ge6\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2+9}{x+y+z}\ge6\)

\(\Leftrightarrow x+y+z+\dfrac{9}{x+y+z}\ge6\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x+y+z+\dfrac{9}{x+y+z}\ge2\sqrt{\dfrac{9\left(x+y+z\right)}{x+y+z}}=2\sqrt{9}=6\) ( đpcm )

Vậy \(\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{\left(x+y+z\right)^2+9}\)

\(\Rightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=1\)

3 tháng 2 2019

Áp dụng các bất đẳng thức sau (tự chứng minh)

\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

được \(8\left(x^4+y^4\right)\ge8\left[\frac{\left(x^2+y^2\right)^2}{2}\right]=4\left(x^2+y^2\right)^2\ge4\left[\frac{\left(x+y\right)^2}{2}\right]^2=1\)

Lại có: \(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow1\ge4xy\)

\(\Leftrightarrow xy\le\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{xy}\ge4\)

Cộng 2 vế của 2 bđt trên lại ta đc đpcm

Dấu "=" xảy ra <=> x = y = 1/2

Vậy .....

16 tháng 12 2019

...\(\Leftrightarrow\frac{x+y+2}{\left(x+1\right)\left(y+1\right)}\ge\frac{2}{1+\sqrt{xy}}\) \(\Leftrightarrow\left(x+y+2\right)\left(1+\sqrt{xy}\right)\ge2\left(x+1\right)\left(y+1\right)\)

\(\Leftrightarrow x\sqrt{xy}+y\sqrt{xy}+2\sqrt{xy}+x+y+2\ge2xy+2x+2y+2\)\

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)

Vì bđt cuối luôn đúng \(\forall xy\ge1\) mà các phép biến đổi trên là tương đương nên bđt đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow x=y\)

16 tháng 9 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)( Bất đẳng thức Svac-xơ )

Dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\)

23 tháng 6 2020

BĐT trên 

\(< =>\frac{xy+yz+xz}{xyz}\ge\frac{9}{x+y+z}\)

\(< =>\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)

Áp dụng BĐT cô si cho 3 số :

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

Nhân vế với vế : \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

Nên ta có đpcm