K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

$A=x^4-4x^3+7x^2-12x+75$

$=(x^2-2x)^2+3x^2-12x+75$

$=(x^2-2x)^2+3(x^2-4x+4)+63$

$=(x^2-2x)^2+3(x-2)^2+63\geq 63$

Vậy $A_{\min}=63$. Giá trị này đạt tại $x^2-2x=x-2=0$

$\Leftrightarrow x=2$

NV
5 tháng 2 2021

\(A=\left(x^4-4x^3+4x^2\right)+\left(3x^2-12x+12\right)+63\)

\(A=x^2\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)+63\)

\(A=\left(x^2+3\right)\left(x-2\right)^2+63\ge63\)

\(A_{min}=63\) khi \(x=2\)

17 tháng 2 2017

Chọn D

21 tháng 2 2019

Chọn B

Xét g(x) =  x 4 - 4 x 3 + 4 x 2 + a  với x  ∈ [0;2]

Bảng biến thiên g(x)

Trường hợp 1: a  ≥ 0.  Khi đó M = a + 1; m = a

Ta có 2m  Với 

Trường hợp 2:  Khi đó M = -a; m = -(a+1)

Trường hợp 3: -1 < a < 0. Với 

Vậy có 5 giá trị a cần tìm.

5 tháng 11 2019

Chọn D

3 tháng 11 2018

Đáp án A

Xét g x = x 4 − 4 x 3 + 4 x 2 + a  

g ' x = 4 x 3 − 12 x 2 + 8 x = 0 ⇔ x = 0 ,   1 ,   2

5 tháng 6 2019

+ Xét hàm số y= x4- 4x3+ 4x2+ a  trên đoạn [ 0; 2].

Ta có đạo hàm y’ = 4x3-12x2+ 8x,   y ' = 0

Khi đó;  y( 0) = y( 2) = a; y( 1) = a+ 1

+ Nếu a≥ 0  thì  M= a+ 1,m = a.

 Để M ≤ 2m khi a≥ 1, suy ra a ∈ 1 ; 2 ; 3  thỏa mãn

+ Nếu a≤ - 1 thì  M = a = - a ,   m = a + 1 = - a - 1 .

 Để  M≤ 2m thì a≤ -2,  suy ra a a ∈ - 2 ; - 3   

Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.

Chọn B.

 

1 tháng 10 2018

Chọn D

Xét hàm số f(x) = x 4 - 4 x 3 + 4 x 2 + a  trên đoạn [0;2], ta có:

trên đoạn

Vì 

nên trên đoạn [0;2] giá trị lớn nhất và giá trị nhỏ nhất của hàm số  lần lượt là a+1, a

Suy ra  nếu  nếu 

 

Khi đó 

nên chọn 

Khi đó  nên chọn 

Vậy có 4 giá trị a thỏa yêu cầu

11 tháng 12 2017

Đáp án D

Xét hàm số .

;

Bảng biến thiên

Do nên suy ra .

Suy ra .

Nếu thì ,

.

Nếu thì ,

.

Do đó hoặc , do a nguyên và thuộc đoạn nên .

10 tháng 11 2017

Đáp án D