K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
Đặt biểu thức là $A$. Ta có:

\(A=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{2}.\sqrt{5-\sqrt{21}}\)

\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{10-2\sqrt{21}}\)

\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3}).\sqrt{(\sqrt{7}-\sqrt{3})^2}\)

\(=(5+\sqrt{21})(\sqrt{7}-\sqrt{3})|\sqrt{7}-\sqrt{3}|=(5+\sqrt{21})(\sqrt{7}-\sqrt{3})^2\)

\(=(5+\sqrt{21})(10-2\sqrt{21})=2(5+\sqrt{21})(5-\sqrt{21})=2(5^2-21)=8\)

Ta có: \(\left(5+\sqrt{21}\right)\cdot\left(\sqrt{14}-\sqrt{6}\right)\cdot\sqrt{5-\sqrt{21}}\)

\(=\dfrac{\left(10+2\sqrt{21}\right)\cdot\left(\sqrt{7}-\sqrt{3}\right)\cdot\sqrt{10-2\sqrt{21}}}{2}\)

\(=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2\cdot\left(\sqrt{7}-\sqrt{3}\right)^2}{2}\)

=8

4 tháng 10 2017

\(A=\)bn ghi lại đề nha mình lười

\(=\left(\sqrt{5+\sqrt{21}}\right)^2\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\left(\sqrt{5+\sqrt{21}}\right)\left(\sqrt{5-\sqrt{21}}\right)\left(\sqrt{5+\sqrt{21}}\right)\left(\sqrt{14}-\sqrt{6}\right)\)

\(=\left(\sqrt{\left(5^2-21\right)}\right)\left(\sqrt{5+\sqrt{21}}\right)\left(\sqrt{14}-\sqrt{6}\right)\)

\(=2.\left(\sqrt{5+\sqrt{21}}\right)\sqrt{2}.\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2.\left(\sqrt{10+2\sqrt{21}}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2.\left(\sqrt{7+2\sqrt{21}+3}\right) \left(\sqrt{7}-\sqrt{3}\right)\)

\(=2.\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2.\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)=2.\left(7-3\right)=2.4=8\)

tíck mình nha bn thanks nhìu !!!!!!!!!

5 tháng 9 2023

a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)

\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)

\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)

\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)

\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)

\(=7-\sqrt{21}+\sqrt{21}-3\)

\(=4\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

20 tháng 6 2021

`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`

`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`

`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`

`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`

`=sqrt2(sqrt5+1+sqrt5-1)`

`=sqrt{2}.2sqrt5`

`=2sqrt{10}`

20 tháng 6 2021

`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`

`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`

`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`

`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`

`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`

`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`

`=2(7-3)`

`=8`

`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`

`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`

`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`

`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`

`=2/sqrt2=sqrt2`

b: \(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\)

\(=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\)

\(=50-10\sqrt{21}+10\sqrt{21}-42=8\)

a: \(A=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}\)

=>\(A^2=\sqrt{2}-1+\sqrt{2}+1+2\sqrt{2-1}=2\sqrt{2}+2\)

=>\(A=\sqrt{2\sqrt{2}+2}\)

Đặt \(B=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2+\sqrt{2}}\)

=>\(B=\sqrt{2\sqrt{2}+2}-\sqrt{2+\sqrt{2}}\)

=>\(B^2=2\sqrt{2}+2+2+\sqrt{2}-2\sqrt{\sqrt{2}\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}\)

=>\(B^2=4+3\sqrt{2}-2\sqrt[4]{2}\left(2+\sqrt{2}\right)\)

=>\(B\simeq0,35\)

8 tháng 7 2018

\(\sqrt{3+\sqrt{5}}=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}+1}{\sqrt{2}}\)

\(\sqrt{7+3\sqrt{5}}=\frac{\sqrt{14+2.3\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{9+2.3\sqrt{5}+5}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)

\(\sqrt{21+6\sqrt{6}}=\sqrt{3+2.\sqrt{3}.3\sqrt{2}+18}=\sqrt{\left(\sqrt{3}+3\sqrt{2}\right)^2}=\sqrt{3}+3\sqrt{2}\)

\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=3\sqrt{2}-\sqrt{3}\)

Nên \(E=\frac{\sqrt{5}+1+3+\sqrt{5}}{\sqrt{2}}.\left(3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\right)\)

\(=\frac{4+2\sqrt{5}}{\sqrt{2}}.2.3.\sqrt{2}=24+12\sqrt{5}\)

28 tháng 7 2020

Cung Bảo Bình rất uy tín

27 tháng 4 2017

\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{7}+\left(\sqrt{7}\right)^2}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)^2=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)=2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)=2\left(25-21\right)=2\cdot4=8\)

15 tháng 8 2020

\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{5+\sqrt{21}}\sqrt{5-\sqrt{21}}\sqrt{5+\sqrt{21}}\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{4}\sqrt{10+2\sqrt{21}}\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=2\left(7-3\right)=2.4=8\)

NV
15 tháng 8 2020

\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\)

\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\)

\(=2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)\)

\(=2\left(25-21\right)=8\)

27 tháng 6 2017

1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)

\(=7-2\sqrt{4\sqrt{7}}\)

29 tháng 5 2018

cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với

4 tháng 10 2017

\(a)A=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\\ =\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}+\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\\ =\sqrt{5}+3+\sqrt{3}-\left(\sqrt{5}+3\right)\\ =\sqrt{3}\)

\(b)B=\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\\ =\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)^2\\ =\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\\ =2\left(5+\sqrt{21}\right)\left(5-\sqrt{21}\right)\\ =2\left(25-21\right)=8\)