Rút gọn biểu thức (6x+1)2+(6x−1)2−2(1+6x)(6x−1)(6x+1)2+(6x−1)2−2(1+6x)(6x−1) =?
Giúp mik với ạ, mik cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(6x+1)^2+(6x-1)^2-2(1+6x)*(6x-1)
=(6x+1)2-2(6x+1)(6x-1)+(6x-1)2
=[(6x+1)-(6x-1)]2
=(6x+1-6x+1)2
=22
=4
\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(\Rightarrow\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(\Rightarrow\left(6x+1-6x+1\right)^2\)
\(\Rightarrow2^2\)
\(\Rightarrow4\)
\(a,=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3=6a^2b\\ b,=\left(6x+1-6x+1\right)^2=2^2=4\)
\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1-6x+1\right)^2\)
\(=2^2=4\)
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
a) \(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1\right)\left(6x+1\right)+\left(6x-1\right)\left(6x-1\right)-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1\right)\left(6x+1\right)+\left(6x-1\right)\left[\left(6x-1\right)-2\left(1+6x\right)\right]\)
\(=\left(6x+1\right)\left(6x+1\right)+\left(6x-1\right)\left(6x-1-2-12x\right)\)
\(=36x^2+12x+1+\left(6x-1\right)\left(-6x-3\right)\)
\(=36x^2+12x+1+\left(-36x^2-12x+3\right)\)
\(=36x^2+12x+1-36x^2-12x+3\)
\(=4\)
Bài 2:
a.
$(6x+1)^2+(6x-1)^2-2(6x+1)(6x-1)$
$=[(6x+1)-(6x-1)]^2=2^2=4$
b.
$3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)$
$=(2^8-1)(2^8+1)(2^{16}+1)$
$=(2^{16}-1)(2^{16}+1)=2^{32}-1$
c.
$2C=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)$
$=(5^8-1)(5^8+1)(5^{16}+1)$
$=(5^{16}-1)(5^{16}+1)=5^{32}-1$
$\Rightarrow C=\frac{5^{32}-1}{2}$
\(\dfrac{\left(6x+1\right)^2+\left(6x-1\right)^2-2}{\left(1+6x\right)\left(6x-1\right)}=\dfrac{\left(36x^2+12x+1\right)+\left(36x^2-12x+1\right)-2}{\left(6x+1\right)\left(6x-1\right)}=\dfrac{36^2+12x+1+36x^2-12x+1-2}{\left(6x+1\right)\left(6x-1\right)}=\dfrac{72x^2}{\left(6x+1\right)\left(6x-1\right)}\)
\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
\(=4\)
\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=\left(2x^3-5x^3\right)+\left(x^2-x^2\right)-3x\)
\(=-3x^3-3x\)
\(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2+5x^2-8x^2\right)-\left(6x+5x\right)+24\)
\(=-11x+24\)
`(6x+1)^2-2(1+6x)(6x-1)+(6x-1)^2`
`=(6x+1-6x+1)^2`
`=2^2=4`