Cho a:b=b:c=a.d=k
Cm:(a^2+b^2+c^2) (b^2+c^2+d^2)=(ab+bc+cd)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất của dãy tỉ số bằng nhau ta có
ab =bc =cd =a+b+cb+c+d
Do đó
(a+b+cb+c+d )3=a+b+cb+c+d .a+b+cb+c+d .a+b+cb+c+d =ab .bc .cd =ad
Theo tính chất của dãy tỉ số bằng nhau ta có
ab = bc = cd = a + b + cb + c + d
Do đó
(a + b + cb + c + d)3 = a + b + cb + c + d.a + b + cb + c + d.a + b +
cb + c + d = ab.bc.cd = ad
a:b=2:5; b:c=4:3=>\(\frac{a}{2}=\frac{b}{5};\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\)
Đặt \(k=\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\Rightarrow k^2=\frac{a.b}{8.20}=\frac{c^2}{225}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(k^2=\frac{a.b}{160}=\frac{c^2}{225}=\frac{a.b-c^2}{160-225}=\frac{-10,4}{-65}=0,16\)
\(\Rightarrow\left[\begin{array}{nghiempt}k=0,4\\k=-0,4\end{array}\right.\)
Với k=0,4=>a=3,2; b=8; c=6=>|a+b+c|=17,2
Với k=-0,4 =>a=-3,2; b=-8; c=-6=>|a+b+c|=17,2
Vậy|a+b+c|=17,2
Giải:
Ta có: \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{8}=\frac{b}{20}\)
\(\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{15}\)
\(\Rightarrow\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\)
Đặt \(\frac{a}{8}=\frac{b}{20}=\frac{c}{15}=k\)
\(\Rightarrow a=8k,b=20k,c=15k\)
Mà \(ab-c^2=-10,4\)
\(\Rightarrow8k20k-\left(15k\right)^2=-10,4\)
\(\Rightarrow160k^2-15^2.k^2=-10,4\)
\(\Rightarrow\left(160-15^2\right).k^2=-10,4\)
\(\Rightarrow-65.k^2=-10,4\)
\(\Rightarrow k^2=0,16\)
\(\Rightarrow k=\pm0,4\)
+) \(k=0,4\Rightarrow a=3,2;b=8;c=6\)
+) \(k=-0,4\Rightarrow a=-3,2;b=-8;c=-6\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(3,2;8;6\right);\left(-3,2;-8;-6\right)\)
a:b=b:c=c:a=>a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra: a/b=1 suy ra: a=b
b/c=1 =>b=c
suy ra: a=b=c
suy ra: a^2.b^2.c^1930:b^1935=1.1.1:1=1